Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 733 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 27 + 419\cdot 733 + 41\cdot 733^{2} + 685\cdot 733^{3} + 301\cdot 733^{4} + 549\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 33 + 263\cdot 733 + 550\cdot 733^{2} + 676\cdot 733^{3} + 249\cdot 733^{4} + 633\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 81 + 298\cdot 733 + 660\cdot 733^{2} + 599\cdot 733^{3} + 390\cdot 733^{4} + 704\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 173 + 476\cdot 733 + 365\cdot 733^{2} + 254\cdot 733^{3} + 210\cdot 733^{4} + 267\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 341 + 44\cdot 733 + 428\cdot 733^{2} + 133\cdot 733^{3} + 456\cdot 733^{4} + 644\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 367 + 360\cdot 733 + 317\cdot 733^{2} + 178\cdot 733^{3} + 352\cdot 733^{4} + 702\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 566 + 729\cdot 733 + 336\cdot 733^{2} + 540\cdot 733^{3} + 57\cdot 733^{4} + 521\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 611 + 340\cdot 733 + 231\cdot 733^{2} + 596\cdot 733^{3} + 179\cdot 733^{4} + 375\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,6,8)(4,5)$ |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,6)(2,7)$ |
| $(1,6)(3,8)$ |
| $(1,6)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,7)(3,8)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,8)(2,4)(3,6)(5,7)$ | $0$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,7)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $-2$ |
| $4$ | $2$ | $(1,5)(2,3)(4,6)(7,8)$ | $0$ |
| $4$ | $2$ | $(2,5)(4,7)$ | $2$ |
| $4$ | $4$ | $(1,4,6,5)(2,8,7,3)$ | $0$ |
| $4$ | $4$ | $(1,5,6,4)(2,8,7,3)$ | $0$ |
| $4$ | $4$ | $(1,8,6,3)(2,5,7,4)$ | $0$ |
| $8$ | $4$ | $(1,5,8,7)(2,6,4,3)$ | $0$ |
| $8$ | $4$ | $(1,6)(2,5,7,4)$ | $0$ |
| $8$ | $4$ | $(1,4,8,7)(2,6,5,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.