Properties

Label 4.2e4_3e2_73.8t29.4
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$10512= 2^{4} \cdot 3^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 2 x^{5} - x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 733 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 27 + 419\cdot 733 + 41\cdot 733^{2} + 685\cdot 733^{3} + 301\cdot 733^{4} + 549\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 33 + 263\cdot 733 + 550\cdot 733^{2} + 676\cdot 733^{3} + 249\cdot 733^{4} + 633\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 81 + 298\cdot 733 + 660\cdot 733^{2} + 599\cdot 733^{3} + 390\cdot 733^{4} + 704\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 173 + 476\cdot 733 + 365\cdot 733^{2} + 254\cdot 733^{3} + 210\cdot 733^{4} + 267\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 341 + 44\cdot 733 + 428\cdot 733^{2} + 133\cdot 733^{3} + 456\cdot 733^{4} + 644\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 367 + 360\cdot 733 + 317\cdot 733^{2} + 178\cdot 733^{3} + 352\cdot 733^{4} + 702\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 566 + 729\cdot 733 + 336\cdot 733^{2} + 540\cdot 733^{3} + 57\cdot 733^{4} + 521\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 611 + 340\cdot 733 + 231\cdot 733^{2} + 596\cdot 733^{3} + 179\cdot 733^{4} + 375\cdot 733^{5} +O\left(733^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,8)(4,5)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,6)(2,7)$
$(1,6)(3,8)$
$(1,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$4$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$4$ $2$ $(1,6)(2,7)$ $0$
$4$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $-2$
$4$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $0$
$4$ $2$ $(2,5)(4,7)$ $2$
$4$ $4$ $(1,4,6,5)(2,8,7,3)$ $0$
$4$ $4$ $(1,5,6,4)(2,8,7,3)$ $0$
$4$ $4$ $(1,8,6,3)(2,5,7,4)$ $0$
$8$ $4$ $(1,5,8,7)(2,6,4,3)$ $0$
$8$ $4$ $(1,6)(2,5,7,4)$ $0$
$8$ $4$ $(1,4,8,7)(2,6,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.