Properties

Label 4.2e4_3e2_5e5.5t3.1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$450000= 2^{4} \cdot 3^{2} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 5 x^{3} + 5 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 24 + \left(3 a + 7\right)\cdot 31 + \left(23 a + 10\right)\cdot 31^{2} + \left(8 a + 29\right)\cdot 31^{3} + \left(a + 28\right)\cdot 31^{4} + \left(30 a + 30\right)\cdot 31^{5} + \left(15 a + 23\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 + 9\cdot 31 + 11\cdot 31^{2} + 2\cdot 31^{3} + 21\cdot 31^{4} + 13\cdot 31^{5} + 26\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 26 + \left(25 a + 24\right)\cdot 31 + \left(15 a + 5\right)\cdot 31^{2} + \left(28 a + 29\right)\cdot 31^{3} + 7\cdot 31^{4} + \left(12 a + 14\right)\cdot 31^{5} + \left(22 a + 7\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 3 + \left(27 a + 9\right)\cdot 31 + \left(7 a + 22\right)\cdot 31^{2} + \left(22 a + 23\right)\cdot 31^{3} + \left(29 a + 22\right)\cdot 31^{4} + 27\cdot 31^{5} + \left(15 a + 25\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 30 + \left(5 a + 10\right)\cdot 31 + \left(15 a + 12\right)\cdot 31^{2} + \left(2 a + 8\right)\cdot 31^{3} + \left(30 a + 12\right)\cdot 31^{4} + \left(18 a + 6\right)\cdot 31^{5} + \left(8 a + 9\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5,2,4)$
$(1,2)(4,5)$
$(1,2,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(1,2)(4,5)$ $0$
$5$ $4$ $(1,5,2,4)$ $0$
$5$ $4$ $(1,4,2,5)$ $0$
$4$ $5$ $(1,2,4,3,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.