Properties

Label 4.2e4_3e2_5e2_7e2.8t22.9c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$176400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 4 x^{5} - 12 x^{4} + 16 x^{3} + 43 x^{2} + 30 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 368\cdot 709 + 530\cdot 709^{2} + 248\cdot 709^{3} + 116\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 291 + 462\cdot 709 + 641\cdot 709^{2} + 370\cdot 709^{3} + 549\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 425 + 475\cdot 709 + 518\cdot 709^{2} + 117\cdot 709^{3} + 658\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 469 + 702\cdot 709 + 686\cdot 709^{2} + 553\cdot 709^{3} + 616\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 498 + 237\cdot 709 + 118\cdot 709^{2} + 163\cdot 709^{3} + 451\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 528 + 613\cdot 709 + 685\cdot 709^{2} + 180\cdot 709^{3} + 258\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 639 + 269\cdot 709 + 581\cdot 709^{2} + 646\cdot 709^{3} + 312\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 689 + 414\cdot 709 + 490\cdot 709^{2} + 553\cdot 709^{3} + 581\cdot 709^{4} +O\left(709^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(5,6)$
$(1,6)(2,3)(4,8)(5,7)$
$(2,8)(3,4)$
$(1,6)(2,4)(3,8)(5,7)$
$(1,2,7,8)(3,5,4,6)$
$(1,7)(2,8)$
$(1,8,7,2)(3,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,8)(3,4)(5,6)$$-4$
$2$$2$$(1,6)(2,3)(4,8)(5,7)$$0$
$2$$2$$(1,7)(2,8)$$0$
$2$$2$$(2,8)(3,4)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,7)(3,4)$$0$
$2$$2$$(1,8)(2,7)(3,6)(4,5)$$0$
$2$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,2,7,8)(3,5,4,6)$$0$
$2$$4$$(1,8,7,2)(3,5,4,6)$$0$
$2$$4$$(1,5,7,6)(2,3,8,4)$$0$
$2$$4$$(1,3,7,4)(2,5,8,6)$$0$
$2$$4$$(1,5,7,6)(2,4,8,3)$$0$
$2$$4$$(1,3,7,4)(2,6,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.