Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 368\cdot 709 + 530\cdot 709^{2} + 248\cdot 709^{3} + 116\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 291 + 462\cdot 709 + 641\cdot 709^{2} + 370\cdot 709^{3} + 549\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 425 + 475\cdot 709 + 518\cdot 709^{2} + 117\cdot 709^{3} + 658\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 469 + 702\cdot 709 + 686\cdot 709^{2} + 553\cdot 709^{3} + 616\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 498 + 237\cdot 709 + 118\cdot 709^{2} + 163\cdot 709^{3} + 451\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 528 + 613\cdot 709 + 685\cdot 709^{2} + 180\cdot 709^{3} + 258\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 639 + 269\cdot 709 + 581\cdot 709^{2} + 646\cdot 709^{3} + 312\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 689 + 414\cdot 709 + 490\cdot 709^{2} + 553\cdot 709^{3} + 581\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,8)(5,6)$ |
| $(1,6)(2,3)(4,8)(5,7)$ |
| $(2,8)(3,4)$ |
| $(1,6)(2,4)(3,8)(5,7)$ |
| $(1,2,7,8)(3,5,4,6)$ |
| $(1,7)(2,8)$ |
| $(1,8,7,2)(3,5,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,7)(2,8)(3,4)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,6)(2,3)(4,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,8)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,5)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,7,8)(3,5,4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,7,2)(3,5,4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,6)(2,3,8,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,7,4)(2,5,8,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,6)(2,4,8,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,7,4)(2,6,8,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.