Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 581\cdot 709 + 261\cdot 709^{2} + 403\cdot 709^{3} + 300\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 485\cdot 709 + 572\cdot 709^{2} + 447\cdot 709^{3} + 477\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 129 + 360\cdot 709 + 656\cdot 709^{2} + 122\cdot 709^{3} + 277\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 133 + 585\cdot 709 + 578\cdot 709^{2} + 702\cdot 709^{3} + 84\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 270 + 553\cdot 709 + 354\cdot 709^{2} + 9\cdot 709^{3} + 504\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 397 + 202\cdot 709 + 279\cdot 709^{2} + 665\cdot 709^{3} + 520\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 514 + 467\cdot 709 + 371\cdot 709^{2} + 701\cdot 709^{3} + 490\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 661 + 309\cdot 709 + 469\cdot 709^{2} + 491\cdot 709^{3} + 179\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,5)(3,6)$ |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,8)(2,5)$ |
| $(1,4)(2,6)(3,5)(7,8)$ |
| $(1,5)(2,8)(3,4)(6,7)$ |
| $(2,5)(4,7)$ |
| $(1,2)(3,4)(5,8)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,5)(3,6)(4,7)$ | $-4$ |
| $2$ | $2$ | $(2,5)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,5)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,4)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,5)$ | $0$ |
| $2$ | $2$ | $(1,8)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $0$ |
| $2$ | $4$ | $(1,5,8,2)(3,7,6,4)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,4,5,7)$ | $0$ |
| $2$ | $4$ | $(1,7,8,4)(2,6,5,3)$ | $0$ |
| $2$ | $4$ | $(1,7,8,4)(2,3,5,6)$ | $0$ |
| $2$ | $4$ | $(1,2,8,5)(3,7,6,4)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,7,5,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.