Properties

Label 4.2e4_3e2_5e2_7e2.8t22.7
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$176400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{6} + 8 x^{5} - 6 x^{4} - 5 x^{3} + 16 x^{2} - 14 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 581\cdot 709 + 261\cdot 709^{2} + 403\cdot 709^{3} + 300\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 485\cdot 709 + 572\cdot 709^{2} + 447\cdot 709^{3} + 477\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 129 + 360\cdot 709 + 656\cdot 709^{2} + 122\cdot 709^{3} + 277\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 133 + 585\cdot 709 + 578\cdot 709^{2} + 702\cdot 709^{3} + 84\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 270 + 553\cdot 709 + 354\cdot 709^{2} + 9\cdot 709^{3} + 504\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 397 + 202\cdot 709 + 279\cdot 709^{2} + 665\cdot 709^{3} + 520\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 514 + 467\cdot 709 + 371\cdot 709^{2} + 701\cdot 709^{3} + 490\cdot 709^{4} +O\left(709^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 661 + 309\cdot 709 + 469\cdot 709^{2} + 491\cdot 709^{3} + 179\cdot 709^{4} +O\left(709^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(3,6)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,8)(2,5)$
$(1,4)(2,6)(3,5)(7,8)$
$(1,5)(2,8)(3,4)(6,7)$
$(2,5)(4,7)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $-4$
$2$ $2$ $(2,5)(3,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $0$
$2$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,5)$ $0$
$2$ $2$ $(1,8)(3,6)$ $0$
$2$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,5,8,2)(3,7,6,4)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,5,7)$ $0$
$2$ $4$ $(1,7,8,4)(2,6,5,3)$ $0$
$2$ $4$ $(1,7,8,4)(2,3,5,6)$ $0$
$2$ $4$ $(1,2,8,5)(3,7,6,4)$ $0$
$2$ $4$ $(1,3,8,6)(2,7,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.