Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 + 265\cdot 421 + 18\cdot 421^{2} + 29\cdot 421^{3} + 187\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 47 + 113\cdot 421 + 270\cdot 421^{2} + 159\cdot 421^{3} + 121\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 62 + 64\cdot 421 + 368\cdot 421^{2} + 400\cdot 421^{3} + 213\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 81 + 39\cdot 421 + 373\cdot 421^{2} + 307\cdot 421^{3} + 245\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 134 + 155\cdot 421 + 145\cdot 421^{2} + 397\cdot 421^{3} + 135\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 248 + 325\cdot 421 + 125\cdot 421^{2} + 273\cdot 421^{3} + 184\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 280 + 157\cdot 421 + 53\cdot 421^{2} + 189\cdot 421^{3} + 144\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 379 + 142\cdot 421 + 329\cdot 421^{2} + 347\cdot 421^{3} + 29\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,7)$ |
| $(1,4)(3,5)$ |
| $(1,6)(2,5)(3,7)(4,8)$ |
| $(1,7)(2,4)(3,6)(5,8)$ |
| $(1,2)(3,6)(4,7)(5,8)$ |
| $(1,8)(2,5)(3,7)(4,6)$ |
| $(1,4)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,7)(3,5)(6,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,5)(3,7)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,8)(4,5)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(3,5)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(3,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,3)(4,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,8)(3,4)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,4,6)(2,3,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,5)(2,6,7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,4,6)(2,5,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,4,7)(3,8,5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,4,2)(3,8,5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,4,3)(2,6,7,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.