Properties

Label 4.2e4_3e2_5e2_7e2.8t22.5
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$176400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - x^{6} + 10 x^{5} - 20 x^{3} + 9 x^{2} + 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 35 + 265\cdot 421 + 18\cdot 421^{2} + 29\cdot 421^{3} + 187\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 113\cdot 421 + 270\cdot 421^{2} + 159\cdot 421^{3} + 121\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 64\cdot 421 + 368\cdot 421^{2} + 400\cdot 421^{3} + 213\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 81 + 39\cdot 421 + 373\cdot 421^{2} + 307\cdot 421^{3} + 245\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 134 + 155\cdot 421 + 145\cdot 421^{2} + 397\cdot 421^{3} + 135\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 248 + 325\cdot 421 + 125\cdot 421^{2} + 273\cdot 421^{3} + 184\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 280 + 157\cdot 421 + 53\cdot 421^{2} + 189\cdot 421^{3} + 144\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 379 + 142\cdot 421 + 329\cdot 421^{2} + 347\cdot 421^{3} + 29\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)$
$(1,4)(3,5)$
$(1,6)(2,5)(3,7)(4,8)$
$(1,7)(2,4)(3,6)(5,8)$
$(1,2)(3,6)(4,7)(5,8)$
$(1,8)(2,5)(3,7)(4,6)$
$(1,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $-4$
$2$ $2$ $(1,4)(2,7)$ $0$
$2$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$2$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $0$
$2$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$
$2$ $2$ $(1,4)(3,5)$ $0$
$2$ $2$ $(2,7)(3,5)$ $0$
$2$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $0$
$2$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $0$
$2$ $4$ $(1,8,4,6)(2,3,7,5)$ $0$
$2$ $4$ $(1,3,4,5)(2,6,7,8)$ $0$
$2$ $4$ $(1,8,4,6)(2,5,7,3)$ $0$
$2$ $4$ $(1,2,4,7)(3,8,5,6)$ $0$
$2$ $4$ $(1,7,4,2)(3,8,5,6)$ $0$
$2$ $4$ $(1,5,4,3)(2,6,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.