Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 387\cdot 709 + 444\cdot 709^{2} + 677\cdot 709^{3} + 365\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 51 + 600\cdot 709 + 125\cdot 709^{2} + 585\cdot 709^{3} + 691\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 120 + 7\cdot 709 + 536\cdot 709^{2} + 465\cdot 709^{3} + 514\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 141 + 337\cdot 709 + 556\cdot 709^{2} + 525\cdot 709^{3} + 266\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 267 + 408\cdot 709 + 282\cdot 709^{2} + 450\cdot 709^{3} + 117\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 398 + 473\cdot 709 + 199\cdot 709^{2} + 550\cdot 709^{3} + 653\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 525 + 423\cdot 709 + 311\cdot 709^{2} + 398\cdot 709^{3} + 554\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 613 + 198\cdot 709 + 379\cdot 709^{2} + 600\cdot 709^{3} + 379\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,3)$ |
| $(1,7)(4,6)$ |
| $(1,7)(5,8)$ |
| $(1,8)(2,4)(3,6)(5,7)$ |
| $(1,2,7,3)(4,8,6,5)$ |
| $(1,3,7,2)(4,8,6,5)$ |
| $(1,5)(2,4)(3,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,7)(2,3)(4,6)(5,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(2,3)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,4)(3,6)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,8)(3,5)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(2,3)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,6)(3,4)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,8)(3,5)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,7,3)(4,8,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,7,2)(4,8,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,8)(2,6,3,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,8)(2,4,3,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,7,6)(2,8,3,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,7,4)(2,8,3,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.