Properties

Label 4.2e4_3e2_5e2_7e2.8t22.3c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$176400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} - 2 x^{5} - 4 x^{3} + 3 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 393\cdot 421 + 221\cdot 421^{2} + 238\cdot 421^{3} + 273\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 51\cdot 421 + 172\cdot 421^{2} + 285\cdot 421^{3} + 335\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 265\cdot 421 + 165\cdot 421^{2} + 250\cdot 421^{3} + 371\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 124 + 404\cdot 421 + 16\cdot 421^{2} + 228\cdot 421^{3} + 140\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 162 + 248\cdot 421 + 110\cdot 421^{2} + 408\cdot 421^{3} + 42\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 227 + 318\cdot 421 + 208\cdot 421^{2} + 207\cdot 421^{3} + 250\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 271 + 414\cdot 421 + 9\cdot 421^{2} + 90\cdot 421^{3} + 92\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 410 + 9\cdot 421 + 357\cdot 421^{2} + 396\cdot 421^{3} + 176\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(3,5)$
$(1,3)(2,8)(4,6)(5,7)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,7)(2,4)$
$(2,4)(6,8)$
$(1,2)(3,6)(4,7)(5,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,4)(3,5)(6,8)$$-4$
$2$$2$$(1,3)(2,8)(4,6)(5,7)$$0$
$2$$2$$(1,7)(2,4)$$0$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$2$$(2,4)(3,5)$$0$
$2$$2$$(1,7)(3,5)$$0$
$2$$2$$(1,3)(2,6)(4,8)(5,7)$$0$
$2$$2$$(1,6)(2,3)(4,5)(7,8)$$0$
$2$$2$$(1,6)(2,5)(3,4)(7,8)$$0$
$2$$4$$(1,5,7,3)(2,8,4,6)$$0$
$2$$4$$(1,6,7,8)(2,5,4,3)$$0$
$2$$4$$(1,2,7,4)(3,8,5,6)$$0$
$2$$4$$(1,4,7,2)(3,8,5,6)$$0$
$2$$4$$(1,6,7,8)(2,3,4,5)$$0$
$2$$4$$(1,5,7,3)(2,6,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.