Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 393\cdot 421 + 221\cdot 421^{2} + 238\cdot 421^{3} + 273\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 + 51\cdot 421 + 172\cdot 421^{2} + 285\cdot 421^{3} + 335\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 44 + 265\cdot 421 + 165\cdot 421^{2} + 250\cdot 421^{3} + 371\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 124 + 404\cdot 421 + 16\cdot 421^{2} + 228\cdot 421^{3} + 140\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 162 + 248\cdot 421 + 110\cdot 421^{2} + 408\cdot 421^{3} + 42\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 227 + 318\cdot 421 + 208\cdot 421^{2} + 207\cdot 421^{3} + 250\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 271 + 414\cdot 421 + 9\cdot 421^{2} + 90\cdot 421^{3} + 92\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 410 + 9\cdot 421 + 357\cdot 421^{2} + 396\cdot 421^{3} + 176\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,4)(3,5)$ |
| $(1,3)(2,8)(4,6)(5,7)$ |
| $(1,3)(2,6)(4,8)(5,7)$ |
| $(1,7)(2,4)$ |
| $(2,4)(6,8)$ |
| $(1,2)(3,6)(4,7)(5,8)$ |
| $(1,4)(2,7)(3,6)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,4)(3,5)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,6)(4,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(2,4)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,7)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,6)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,3)(4,5)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,5,7,3)(2,8,4,6)$ | $0$ |
| $2$ | $4$ | $(1,6,7,8)(2,5,4,3)$ | $0$ |
| $2$ | $4$ | $(1,2,7,4)(3,8,5,6)$ | $0$ |
| $2$ | $4$ | $(1,4,7,2)(3,8,5,6)$ | $0$ |
| $2$ | $4$ | $(1,6,7,8)(2,3,4,5)$ | $0$ |
| $2$ | $4$ | $(1,5,7,3)(2,6,4,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.