Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 709 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 477\cdot 709 + 563\cdot 709^{2} + 290\cdot 709^{3} + 469\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 46 + 123\cdot 709 + 271\cdot 709^{2} + 294\cdot 709^{3} + 222\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 84 + 615\cdot 709 + 80\cdot 709^{2} + 644\cdot 709^{3} + 287\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 211 + 565\cdot 709 + 192\cdot 709^{2} + 492\cdot 709^{3} + 188\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 262 + 640\cdot 709 + 427\cdot 709^{2} + 159\cdot 709^{3} + 357\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 314 + 567\cdot 709 + 118\cdot 709^{2} + 615\cdot 709^{3} + 365\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 567 + 75\cdot 709 + 108\cdot 709^{2} + 306\cdot 709^{3} + 157\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 639 + 480\cdot 709 + 363\cdot 709^{2} + 33\cdot 709^{3} + 78\cdot 709^{4} +O\left(709^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,8)(4,7)(5,6)$ |
| $(2,5)(3,4)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
| $(1,2)(3,6)(4,8)(5,7)$ |
| $(1,7)(2,5)$ |
| $(2,5)(6,8)$ |
| $(1,5)(2,7)(3,6)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,5)(3,4)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,8)(4,7)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,6)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,5)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,7)(3,6)(4,8)$ | $0$ |
| $2$ | $2$ | $(2,5)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,7)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,6)(4,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,3)(4,5)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,5)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,4,7,3)(2,8,5,6)$ | $0$ |
| $2$ | $4$ | $(1,6,7,8)(2,4,5,3)$ | $0$ |
| $2$ | $4$ | $(1,2,7,5)(3,8,4,6)$ | $0$ |
| $2$ | $4$ | $(1,5,7,2)(3,8,4,6)$ | $0$ |
| $2$ | $4$ | $(1,6,7,8)(2,3,5,4)$ | $0$ |
| $2$ | $4$ | $(1,4,7,3)(2,6,5,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.