Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 77 + 194\cdot 421 + 213\cdot 421^{2} + 99\cdot 421^{3} + 286\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 91 + 97\cdot 421 + 148\cdot 421^{2} + 75\cdot 421^{3} + 175\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 106 + 306\cdot 421 + 38\cdot 421^{2} + 156\cdot 421^{3} + 107\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 177 + 273\cdot 421 + 274\cdot 421^{2} + 162\cdot 421^{3} + 242\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 198 + 407\cdot 421 + 195\cdot 421^{2} + 319\cdot 421^{3} + 143\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 279 + 273\cdot 421 + 383\cdot 421^{2} + 276\cdot 421^{3} + 392\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 355 + 389\cdot 421 + 349\cdot 421^{2} + 281\cdot 421^{3} + 274\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 403 + 162\cdot 421 + 79\cdot 421^{2} + 312\cdot 421^{3} + 61\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(6,7)$ |
| $(1,5)(2,8)(3,6)(4,7)$ |
| $(3,4)(6,7)$ |
| $(5,8)(6,7)$ |
| $(1,5)(2,8)(3,7)(4,6)$ |
| $(1,3)(2,4)(5,6)(7,8)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $-4$ |
| $2$ | $2$ | $(1,2)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,6)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,7)(3,5)(4,8)$ | $0$ |
| $2$ | $2$ | $(3,4)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,7)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,6)(3,5)(4,8)$ | $0$ |
| $2$ | $4$ | $(1,8,2,5)(3,6,4,7)$ | $0$ |
| $2$ | $4$ | $(1,4,2,3)(5,6,8,7)$ | $0$ |
| $2$ | $4$ | $(1,7,2,6)(3,8,4,5)$ | $0$ |
| $2$ | $4$ | $(1,3,2,4)(5,6,8,7)$ | $0$ |
| $2$ | $4$ | $(1,8,2,5)(3,7,4,6)$ | $0$ |
| $2$ | $4$ | $(1,6,2,7)(3,8,4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.