Properties

Label 4.2e4_3e2_5e2_7e2.8t22.10
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$176400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 10 x^{5} + 9 x^{4} - 14 x^{3} + 16 x^{2} - 4 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 77 + 194\cdot 421 + 213\cdot 421^{2} + 99\cdot 421^{3} + 286\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 91 + 97\cdot 421 + 148\cdot 421^{2} + 75\cdot 421^{3} + 175\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 106 + 306\cdot 421 + 38\cdot 421^{2} + 156\cdot 421^{3} + 107\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 177 + 273\cdot 421 + 274\cdot 421^{2} + 162\cdot 421^{3} + 242\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 198 + 407\cdot 421 + 195\cdot 421^{2} + 319\cdot 421^{3} + 143\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 279 + 273\cdot 421 + 383\cdot 421^{2} + 276\cdot 421^{3} + 392\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 355 + 389\cdot 421 + 349\cdot 421^{2} + 281\cdot 421^{3} + 274\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 403 + 162\cdot 421 + 79\cdot 421^{2} + 312\cdot 421^{3} + 61\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(6,7)$
$(1,5)(2,8)(3,6)(4,7)$
$(3,4)(6,7)$
$(5,8)(6,7)$
$(1,5)(2,8)(3,7)(4,6)$
$(1,3)(2,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $-4$
$2$ $2$ $(1,2)(6,7)$ $0$
$2$ $2$ $(1,5)(2,8)(3,6)(4,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,5)(4,8)$ $0$
$2$ $2$ $(3,4)(6,7)$ $0$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,5)(2,8)(3,7)(4,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$2$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $0$
$2$ $4$ $(1,8,2,5)(3,6,4,7)$ $0$
$2$ $4$ $(1,4,2,3)(5,6,8,7)$ $0$
$2$ $4$ $(1,7,2,6)(3,8,4,5)$ $0$
$2$ $4$ $(1,3,2,4)(5,6,8,7)$ $0$
$2$ $4$ $(1,8,2,5)(3,7,4,6)$ $0$
$2$ $4$ $(1,6,2,7)(3,8,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.