Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 8 + \left(7 a + 14\right)\cdot 17 + \left(5 a + 14\right)\cdot 17^{2} + \left(7 a + 14\right)\cdot 17^{3} + \left(11 a + 5\right)\cdot 17^{4} + \left(10 a + 1\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 a + 5 + \left(9 a + 8\right)\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(9 a + 16\right)\cdot 17^{3} + \left(5 a + 9\right)\cdot 17^{4} + 6 a\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 4\cdot 17 + 17^{2} + 16\cdot 17^{3} + 15\cdot 17^{4} + 15\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 11\cdot 17^{2} + 13\cdot 17^{4} + 4\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 5 + \left(16 a + 5\right)\cdot 17 + \left(11 a + 16\right)\cdot 17^{2} + \left(5 a + 12\right)\cdot 17^{3} + \left(3 a + 12\right)\cdot 17^{4} + 13 a\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 13 a + 9 + \left(5 a + 12\right)\cdot 17^{2} + \left(11 a + 6\right)\cdot 17^{3} + \left(13 a + 10\right)\cdot 17^{4} + \left(3 a + 10\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(3,5,6)$ |
| $(1,2)(3,5)$ |
| $(1,4,2)(3,6,5)$ |
| $(2,4)(5,6)$ |
| $(1,5,4,3,2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $3$ |
$2$ |
$(1,3)(2,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,3)(2,6)(4,5)$ |
$0$ |
| $9$ |
$2$ |
$(1,2)(3,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,4,2)(3,6,5)$ |
$-2$ |
| $2$ |
$3$ |
$(1,4,2)(3,5,6)$ |
$-2$ |
| $4$ |
$3$ |
$(3,5,6)$ |
$1$ |
| $6$ |
$6$ |
$(1,5,4,3,2,6)$ |
$0$ |
| $6$ |
$6$ |
$(1,6,4,3,2,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.