Properties

Label 4.2e4_3e2_5e2_37e2.8t22.3
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$4928400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} - 14 x^{5} + 46 x^{4} + 30 x^{3} - 29 x^{2} - 172 x + 157 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 11 + 116\cdot 181 + 7\cdot 181^{2} + 85\cdot 181^{3} + 73\cdot 181^{4} + 73\cdot 181^{5} + 94\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 47 + 181 + 103\cdot 181^{2} + 166\cdot 181^{3} + 39\cdot 181^{4} + 95\cdot 181^{5} + 26\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 51 + 11\cdot 181 + 30\cdot 181^{2} + 74\cdot 181^{3} + 6\cdot 181^{4} + 135\cdot 181^{5} + 22\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 57 + 169\cdot 181 + 172\cdot 181^{2} + 86\cdot 181^{3} + 56\cdot 181^{4} + 91\cdot 181^{5} + 123\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 105 + 173\cdot 181 + 69\cdot 181^{2} + 46\cdot 181^{3} + 154\cdot 181^{4} + 165\cdot 181^{5} + 19\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 149 + 7\cdot 181 + 89\cdot 181^{2} + 154\cdot 181^{3} + 144\cdot 181^{4} + 150\cdot 181^{5} + 14\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 151 + 45\cdot 181 + 54\cdot 181^{2} + 48\cdot 181^{3} + 137\cdot 181^{4} + 2\cdot 181^{5} + 49\cdot 181^{6} +O\left(181^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 153 + 17\cdot 181 + 16\cdot 181^{2} + 62\cdot 181^{3} + 111\cdot 181^{4} + 9\cdot 181^{5} + 11\cdot 181^{6} +O\left(181^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,7,4)(2,3,8,6)$
$(2,8)(4,5)$
$(1,3)(2,5)(4,8)(6,7)$
$(1,7)(2,8)$
$(1,3)(2,4)(5,8)(6,7)$
$(1,5,7,4)(2,6,8,3)$
$(2,8)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,7)(2,8)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(2,8)(3,6)$ $0$
$2$ $2$ $(1,7)(3,6)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,7,4)(2,3,8,6)$ $0$
$2$ $4$ $(1,8,7,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,6,7,3)(2,5,8,4)$ $0$
$2$ $4$ $(1,5,7,4)(2,6,8,3)$ $0$
$2$ $4$ $(1,2,7,8)(3,5,6,4)$ $0$
$2$ $4$ $(1,6,7,3)(2,4,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.