Properties

Label 4.2e4_3e2_5e2_31e2.8t22.5c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$3459600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} + 2 x^{5} + 9 x^{4} + 52 x^{3} + 28 x^{2} + 80 x + 100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 15 + 91\cdot 109 + 39\cdot 109^{2} + 55\cdot 109^{3} + 30\cdot 109^{4} + 19\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 75\cdot 109 + 100\cdot 109^{2} + 39\cdot 109^{3} + 18\cdot 109^{4} + 31\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 + 107\cdot 109 + 3\cdot 109^{2} + 44\cdot 109^{3} + 101\cdot 109^{4} + 99\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 + 24\cdot 109 + 10\cdot 109^{2} + 31\cdot 109^{3} + 36\cdot 109^{4} + 16\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 21 + 5\cdot 109 + 72\cdot 109^{2} + 102\cdot 109^{3} + 4\cdot 109^{4} + 72\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 60 + 53\cdot 109 + 73\cdot 109^{2} + 78\cdot 109^{3} + 67\cdot 109^{4} + 67\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 76 + 55\cdot 109 + 39\cdot 109^{2} + 39\cdot 109^{3} + 7\cdot 109^{4} + 65\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 102 + 23\cdot 109 + 96\cdot 109^{2} + 44\cdot 109^{3} + 60\cdot 109^{4} + 64\cdot 109^{5} +O\left(109^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,2,5)(3,8,6,4)$
$(1,5,2,7)(3,8,6,4)$
$(1,3)(2,6)(4,7)(5,8)$
$(3,6)(4,8)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,5)(2,7)(3,4)(6,8)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,6)(4,8)(5,7)$$-4$
$2$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$2$$2$$(1,4)(2,8)(3,5)(6,7)$$0$
$2$$2$$(3,6)(4,8)$$0$
$2$$2$$(1,8)(2,4)(3,5)(6,7)$$0$
$2$$2$$(4,8)(5,7)$$0$
$2$$2$$(1,7)(2,5)(3,8)(4,6)$$0$
$2$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$2$$2$$(1,3)(2,6)(4,5)(7,8)$$0$
$2$$2$$(3,6)(5,7)$$0$
$2$$4$$(1,7,2,5)(3,8,6,4)$$0$
$2$$4$$(1,5,2,7)(3,8,6,4)$$0$
$2$$4$$(1,8,2,4)(3,7,6,5)$$0$
$2$$4$$(1,6,2,3)(4,7,8,5)$$0$
$2$$4$$(1,4,2,8)(3,7,6,5)$$0$
$2$$4$$(1,6,2,3)(4,5,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.