Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 91\cdot 109 + 39\cdot 109^{2} + 55\cdot 109^{3} + 30\cdot 109^{4} + 19\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 75\cdot 109 + 100\cdot 109^{2} + 39\cdot 109^{3} + 18\cdot 109^{4} + 31\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 107\cdot 109 + 3\cdot 109^{2} + 44\cdot 109^{3} + 101\cdot 109^{4} + 99\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 24\cdot 109 + 10\cdot 109^{2} + 31\cdot 109^{3} + 36\cdot 109^{4} + 16\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 21 + 5\cdot 109 + 72\cdot 109^{2} + 102\cdot 109^{3} + 4\cdot 109^{4} + 72\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 60 + 53\cdot 109 + 73\cdot 109^{2} + 78\cdot 109^{3} + 67\cdot 109^{4} + 67\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 76 + 55\cdot 109 + 39\cdot 109^{2} + 39\cdot 109^{3} + 7\cdot 109^{4} + 65\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 102 + 23\cdot 109 + 96\cdot 109^{2} + 44\cdot 109^{3} + 60\cdot 109^{4} + 64\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,2,5)(3,8,6,4)$ |
| $(1,5,2,7)(3,8,6,4)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
| $(3,6)(4,8)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,5)(2,7)(3,4)(6,8)$ |
| $(1,3)(2,6)(4,5)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,6)(4,8)(5,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,8)(3,5)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,4)(3,5)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(4,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,5)(3,8)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,8)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,5)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,5)(3,8,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,2,7)(3,8,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,2,4)(3,7,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,2,3)(4,7,8,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,8)(3,7,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,2,3)(4,5,8,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.