Properties

Label 4.2e4_3e2_5e2_31e2.8t22.4c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$3459600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 7 x^{6} + 20 x^{5} + 21 x^{4} - 55 x^{3} - 27 x^{2} + 98 x + 76 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 75\cdot 109 + 109^{2} + 41\cdot 109^{3} + 66\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 37\cdot 109 + 8\cdot 109^{2} + 100\cdot 109^{3} + 50\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 92\cdot 109 + 24\cdot 109^{2} + 106\cdot 109^{3} + 70\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 103\cdot 109 + 9\cdot 109^{2} + 23\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 87 + 63\cdot 109 + 101\cdot 109^{2} + 49\cdot 109^{3} + 84\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 88 + 50\cdot 109 + 101\cdot 109^{2} + 92\cdot 109^{3} + 30\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 103 + 28\cdot 109 + 100\cdot 109^{2} + 25\cdot 109^{3} + 42\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 105 + 92\cdot 109 + 87\cdot 109^{2} + 105\cdot 109^{3} + 3\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(4,8)$
$(1,6)(2,7)$
$(1,4)(2,3)(5,7)(6,8)$
$(1,6)(3,5)$
$(1,8)(2,3)(4,6)(5,7)$
$(1,2)(3,4)(5,8)(6,7)$
$(1,7)(2,6)(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,7)(3,5)(4,8)$$-4$
$2$$2$$(1,6)(2,7)$$0$
$2$$2$$(1,4)(2,3)(5,7)(6,8)$$0$
$2$$2$$(1,2)(3,4)(5,8)(6,7)$$0$
$2$$2$$(1,7)(2,6)(3,4)(5,8)$$0$
$2$$2$$(1,3)(2,4)(5,6)(7,8)$$0$
$2$$2$$(1,6)(3,5)$$0$
$2$$2$$(2,7)(3,5)$$0$
$2$$2$$(1,4)(2,5)(3,7)(6,8)$$0$
$2$$2$$(1,5)(2,4)(3,6)(7,8)$$0$
$2$$4$$(1,8,6,4)(2,5,7,3)$$0$
$2$$4$$(1,3,6,5)(2,8,7,4)$$0$
$2$$4$$(1,8,6,4)(2,3,7,5)$$0$
$2$$4$$(1,7,6,2)(3,8,5,4)$$0$
$2$$4$$(1,2,6,7)(3,8,5,4)$$0$
$2$$4$$(1,5,6,3)(2,8,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.