Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 75\cdot 109 + 109^{2} + 41\cdot 109^{3} + 66\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 31 + 37\cdot 109 + 8\cdot 109^{2} + 100\cdot 109^{3} + 50\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 62 + 92\cdot 109 + 24\cdot 109^{2} + 106\cdot 109^{3} + 70\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 64 + 103\cdot 109 + 9\cdot 109^{2} + 23\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 87 + 63\cdot 109 + 101\cdot 109^{2} + 49\cdot 109^{3} + 84\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 88 + 50\cdot 109 + 101\cdot 109^{2} + 92\cdot 109^{3} + 30\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 103 + 28\cdot 109 + 100\cdot 109^{2} + 25\cdot 109^{3} + 42\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 105 + 92\cdot 109 + 87\cdot 109^{2} + 105\cdot 109^{3} + 3\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(4,8)$ |
| $(1,6)(2,7)$ |
| $(1,4)(2,3)(5,7)(6,8)$ |
| $(1,6)(3,5)$ |
| $(1,8)(2,3)(4,6)(5,7)$ |
| $(1,2)(3,4)(5,8)(6,7)$ |
| $(1,7)(2,6)(3,4)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,7)(3,5)(4,8)$ | $-4$ |
| $2$ | $2$ | $(1,6)(2,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,6)(3,4)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(3,5)$ | $0$ |
| $2$ | $2$ | $(2,7)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,4)(3,6)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,8,6,4)(2,5,7,3)$ | $0$ |
| $2$ | $4$ | $(1,3,6,5)(2,8,7,4)$ | $0$ |
| $2$ | $4$ | $(1,8,6,4)(2,3,7,5)$ | $0$ |
| $2$ | $4$ | $(1,7,6,2)(3,8,5,4)$ | $0$ |
| $2$ | $4$ | $(1,2,6,7)(3,8,5,4)$ | $0$ |
| $2$ | $4$ | $(1,5,6,3)(2,8,7,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.