Properties

Label 4.2e4_3e2_5e2_19e2.8t22.6c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1299600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} - 18 x^{5} + 34 x^{4} - 64 x^{3} + 78 x^{2} - 84 x + 61 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8\cdot 61 + 15\cdot 61^{2} + 39\cdot 61^{3} + 46\cdot 61^{4} + 22\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 + 8\cdot 61 + 19\cdot 61^{2} + 21\cdot 61^{3} + 38\cdot 61^{4} + 28\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 15\cdot 61 + 38\cdot 61^{2} + 47\cdot 61^{3} + 48\cdot 61^{4} + 22\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 23\cdot 61 + 29\cdot 61^{2} + 7\cdot 61^{3} + 57\cdot 61^{4} + 50\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 16 + 26\cdot 61 + 55\cdot 61^{2} + 38\cdot 61^{3} + 8\cdot 61^{4} + 11\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 43 + 18\cdot 61 + 32\cdot 61^{2} + 22\cdot 61^{3} + 28\cdot 61^{4} + 59\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 47 + 16\cdot 61 + 29\cdot 61^{2} + 19\cdot 61^{3} + 61^{4} + 17\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 51 + 5\cdot 61 + 25\cdot 61^{2} + 47\cdot 61^{3} + 14\cdot 61^{4} + 31\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,6)(3,8)(4,7)$
$(5,6)(7,8)$
$(3,4)(7,8)$
$(1,7,2,8)(3,6,4,5)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,2)(7,8)$
$(1,8,2,7)(3,6,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-4$
$2$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$2$$2$$(1,2)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(3,4)(7,8)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$2$$(1,3)(2,4)(5,8)(6,7)$$0$
$2$$4$$(1,7,2,8)(3,6,4,5)$$0$
$2$$4$$(1,8,2,7)(3,6,4,5)$$0$
$2$$4$$(1,6,2,5)(3,7,4,8)$$0$
$2$$4$$(1,6,2,5)(3,8,4,7)$$0$
$2$$4$$(1,3,2,4)(5,7,6,8)$$0$
$2$$4$$(1,3,2,4)(5,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.