Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 53\cdot 61 + 48\cdot 61^{2} + 4\cdot 61^{3} + 48\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 20\cdot 61 + 59\cdot 61^{2} + 57\cdot 61^{3} + 9\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 + 22\cdot 61 + 10\cdot 61^{2} + 58\cdot 61^{3} + 31\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 13\cdot 61 + 12\cdot 61^{2} + 29\cdot 61^{3} + 52\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 45 + 42\cdot 61 + 60\cdot 61^{2} + 30\cdot 61^{3} + 49\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 52 + 30\cdot 61 + 22\cdot 61^{2} + 55\cdot 61^{3} + 26\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 57 + 25\cdot 61 + 15\cdot 61^{2} + 5\cdot 61^{3} + 39\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 58 + 34\cdot 61 + 14\cdot 61^{2} + 2\cdot 61^{3} + 47\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,8)(4,7)(5,6)$ |
| $(1,4)(2,5)(3,7)(6,8)$ |
| $(2,4)(7,8)$ |
| $(1,5)(2,4)$ |
| $(1,2)(3,7)(4,5)(6,8)$ |
| $(1,3)(2,7)(4,8)(5,6)$ |
| $(2,4)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,5)(2,4)(3,6)(7,8)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,8)(4,7)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,7)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,6)(3,4)(5,8)$ | $0$ |
| $2$ | $2$ | $(2,4)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,5)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,3)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,8)(5,6)$ | $0$ |
| $2$ | $4$ | $(1,6,5,3)(2,8,4,7)$ | $0$ |
| $2$ | $4$ | $(1,8,5,7)(2,6,4,3)$ | $0$ |
| $2$ | $4$ | $(1,4,5,2)(3,8,6,7)$ | $0$ |
| $2$ | $4$ | $(1,2,5,4)(3,8,6,7)$ | $0$ |
| $2$ | $4$ | $(1,8,5,7)(2,3,4,6)$ | $0$ |
| $2$ | $4$ | $(1,6,5,3)(2,7,4,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.