Properties

Label 4.2e4_3e2_5e2_17e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$1040400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} - x^{3} - 6 x^{2} + 15 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 9 + \left(12 a + 20\right)\cdot 31 + \left(6 a + 13\right)\cdot 31^{2} + \left(16 a + 28\right)\cdot 31^{3} + \left(10 a + 20\right)\cdot 31^{4} + \left(7 a + 21\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 30 a + \left(30 a + 24\right)\cdot 31 + \left(22 a + 22\right)\cdot 31^{2} + \left(2 a + 24\right)\cdot 31^{3} + \left(2 a + 23\right)\cdot 31^{4} + 23 a\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ a + 29 + 24\cdot 31 + \left(8 a + 6\right)\cdot 31^{2} + \left(28 a + 7\right)\cdot 31^{3} + \left(28 a + 25\right)\cdot 31^{4} + \left(7 a + 13\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 + 6\cdot 31 + 20\cdot 31^{2} + 29\cdot 31^{3} + 13\cdot 31^{4} + 7\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 15 + \left(18 a + 10\right)\cdot 31 + \left(24 a + 14\right)\cdot 31^{2} + \left(14 a + 23\right)\cdot 31^{3} + \left(20 a + 25\right)\cdot 31^{4} + \left(23 a + 25\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 + 6\cdot 31 + 15\cdot 31^{2} + 10\cdot 31^{3} + 14\cdot 31^{4} + 23\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(1,3,5,4,6,2)$
$(3,4)(5,6)$
$(2,4)(5,6)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$9$ $2$ $(2,4)(5,6)$ $0$
$2$ $3$ $(1,5,6)(2,3,4)$ $-2$
$2$ $3$ $(1,5,6)(2,4,3)$ $-2$
$4$ $3$ $(1,6,5)$ $1$
$6$ $6$ $(1,3,5,4,6,2)$ $0$
$6$ $6$ $(1,3,5,2,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.