Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 34\cdot 61 + 55\cdot 61^{2} + 46\cdot 61^{3} + 51\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 26\cdot 61 + 8\cdot 61^{2} + 35\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 58\cdot 61 + 60\cdot 61^{2} + 4\cdot 61^{3} + 14\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 28 + 59\cdot 61 + 42\cdot 61^{2} + 14\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 37 + 14\cdot 61 + 44\cdot 61^{2} + 61^{3} + 16\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 45 + 9\cdot 61 + 61^{2} + 45\cdot 61^{3} + 13\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 49 + 8\cdot 61 + 35\cdot 61^{2} + 31\cdot 61^{3} + 54\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 51 + 32\cdot 61 + 56\cdot 61^{2} + 2\cdot 61^{3} + 25\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(4,7)(6,8)$ |
| $(1,6)(2,8)(3,4)(5,7)$ |
| $(1,6)(2,8)(3,7)(4,5)$ |
| $(1,5,2,3)(4,6,7,8)$ |
| $(1,3,2,5)(4,6,7,8)$ |
| $(1,3)(2,5)(4,6)(7,8)$ |
| $(1,3)(2,5)(4,8)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,5)(4,7)(6,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,6)(2,8)(3,4)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,7)(3,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(3,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,6)(3,4)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(3,5)(4,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,2,3)(4,6,7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,2,5)(4,6,7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,2,6)(3,7,5,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,4)(3,6,5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,7)(3,6,5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,2,8)(3,7,5,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.