Properties

Label 4.2e4_3e2_5e2_13e2.8t22.4
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$608400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 6 x^{6} + 12 x^{5} + 24 x^{4} - 14 x^{3} - 31 x^{2} + 4 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 34\cdot 61 + 55\cdot 61^{2} + 46\cdot 61^{3} + 51\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 26\cdot 61 + 8\cdot 61^{2} + 35\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 58\cdot 61 + 60\cdot 61^{2} + 4\cdot 61^{3} + 14\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 59\cdot 61 + 42\cdot 61^{2} + 14\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 14\cdot 61 + 44\cdot 61^{2} + 61^{3} + 16\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 9\cdot 61 + 61^{2} + 45\cdot 61^{3} + 13\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 49 + 8\cdot 61 + 35\cdot 61^{2} + 31\cdot 61^{3} + 54\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 51 + 32\cdot 61 + 56\cdot 61^{2} + 2\cdot 61^{3} + 25\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,7)(6,8)$
$(1,6)(2,8)(3,4)(5,7)$
$(1,6)(2,8)(3,7)(4,5)$
$(1,5,2,3)(4,6,7,8)$
$(1,3,2,5)(4,6,7,8)$
$(1,3)(2,5)(4,6)(7,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $-4$
$2$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $0$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $2$ $(4,7)(6,8)$ $0$
$2$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $0$
$2$ $2$ $(3,5)(6,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $0$
$2$ $2$ $(3,5)(4,7)$ $0$
$2$ $4$ $(1,5,2,3)(4,6,7,8)$ $0$
$2$ $4$ $(1,3,2,5)(4,6,7,8)$ $0$
$2$ $4$ $(1,8,2,6)(3,7,5,4)$ $0$
$2$ $4$ $(1,7,2,4)(3,6,5,8)$ $0$
$2$ $4$ $(1,4,2,7)(3,6,5,8)$ $0$
$2$ $4$ $(1,6,2,8)(3,7,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.