Properties

Label 4.2e4_3e2_5e2_11e2.8t22.8c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$435600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} - 12 x^{5} + 8 x^{4} - 18 x^{3} + 35 x^{2} - 18 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 120 + 261\cdot 421 + 147\cdot 421^{2} + 388\cdot 421^{3} + 315\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 128 + 341\cdot 421 + 180\cdot 421^{2} + 358\cdot 421^{3} + 241\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 220 + 277\cdot 421 + 223\cdot 421^{2} + 318\cdot 421^{3} + 212\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 231 + 315\cdot 421 + 132\cdot 421^{2} + 223\cdot 421^{3} + 365\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 268 + 97\cdot 421 + 165\cdot 421^{2} + 3\cdot 421^{3} + 71\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 326 + 141\cdot 421 + 348\cdot 421^{2} + 91\cdot 421^{3} + 213\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 403 + 411\cdot 421 + 122\cdot 421^{2} + 270\cdot 421^{3} + 40\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 409 + 257\cdot 421 + 362\cdot 421^{2} + 29\cdot 421^{3} + 223\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,6)(3,8)(4,7)$
$(1,2)(4,8)$
$(1,2)(5,6)$
$(1,2)(3,7)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,4,2,8)(3,6,7,5)$
$(1,8,2,4)(3,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,7)(4,8)(5,6)$$-4$
$2$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$2$$2$$(1,2)(3,7)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,2)(4,8)$$0$
$2$$2$$(3,7)(4,8)$$0$
$2$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$2$$2$$(1,7)(2,3)(4,5)(6,8)$$0$
$2$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$2$$4$$(1,4,2,8)(3,6,7,5)$$0$
$2$$4$$(1,5,2,6)(3,4,7,8)$$0$
$2$$4$$(1,3,2,7)(4,5,8,6)$$0$
$2$$4$$(1,8,2,4)(3,6,7,5)$$0$
$2$$4$$(1,6,2,5)(3,4,7,8)$$0$
$2$$4$$(1,7,2,3)(4,5,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.