Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 120 + 261\cdot 421 + 147\cdot 421^{2} + 388\cdot 421^{3} + 315\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 128 + 341\cdot 421 + 180\cdot 421^{2} + 358\cdot 421^{3} + 241\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 220 + 277\cdot 421 + 223\cdot 421^{2} + 318\cdot 421^{3} + 212\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 231 + 315\cdot 421 + 132\cdot 421^{2} + 223\cdot 421^{3} + 365\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 268 + 97\cdot 421 + 165\cdot 421^{2} + 3\cdot 421^{3} + 71\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 326 + 141\cdot 421 + 348\cdot 421^{2} + 91\cdot 421^{3} + 213\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 403 + 411\cdot 421 + 122\cdot 421^{2} + 270\cdot 421^{3} + 40\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 409 + 257\cdot 421 + 362\cdot 421^{2} + 29\cdot 421^{3} + 223\cdot 421^{4} +O\left(421^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5)(2,6)(3,8)(4,7)$ |
| $(1,2)(4,8)$ |
| $(1,2)(5,6)$ |
| $(1,2)(3,7)$ |
| $(1,6)(2,5)(3,8)(4,7)$ |
| $(1,4,2,8)(3,6,7,5)$ |
| $(1,8,2,4)(3,6,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,7)(4,8)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,5)(2,6)(3,8)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(3,7)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,4)(3,6)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,3)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,8)(3,6)(5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,8)(3,6,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,2,6)(3,4,7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,2,7)(4,5,8,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,2,4)(3,6,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,2,5)(3,4,7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,3)(4,5,8,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.