Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 3\cdot 181 + 159\cdot 181^{2} + 49\cdot 181^{3} + 114\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 99\cdot 181 + 52\cdot 181^{2} + 35\cdot 181^{3} + 50\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 35 + 50\cdot 181 + 71\cdot 181^{2} + 130\cdot 181^{3} + 81\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 37 + 21\cdot 181 + 113\cdot 181^{2} + 133\cdot 181^{3} + 172\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 108 + 28\cdot 181 + 79\cdot 181^{2} + 146\cdot 181^{3} + 115\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 162\cdot 181 + 89\cdot 181^{2} + 132\cdot 181^{3} + 179\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 175 + 164\cdot 181 + 160\cdot 181^{2} + 96\cdot 181^{3} + 137\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 177 + 12\cdot 181 + 179\cdot 181^{2} + 179\cdot 181^{3} + 52\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,5)(4,8)$ |
| $(1,6)(2,8)(3,7)(4,5)$ |
| $(1,6)(2,4)(3,7)(5,8)$ |
| $(1,5,3,2)(4,7,8,6)$ |
| $(1,3)(2,5)$ |
| $(2,5)(6,7)$ |
| $(1,2,3,5)(4,7,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,5)(4,8)(6,7)$ | $-4$ |
| $2$ | $2$ | $(1,6)(2,8)(3,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,5)$ | $0$ |
| $2$ | $2$ | $(2,5)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,8)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $0$ |
| $2$ | $4$ | $(1,5,3,2)(4,7,8,6)$ | $0$ |
| $2$ | $4$ | $(1,2,3,5)(4,7,8,6)$ | $0$ |
| $2$ | $4$ | $(1,4,3,8)(2,6,5,7)$ | $0$ |
| $2$ | $4$ | $(1,7,3,6)(2,8,5,4)$ | $0$ |
| $2$ | $4$ | $(1,7,3,6)(2,4,5,8)$ | $0$ |
| $2$ | $4$ | $(1,4,3,8)(2,7,5,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.