Properties

Label 4.2e4_3e2_5e2_11e2.8t22.7c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$435600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 5 x^{6} + 4 x^{5} - 12 x^{4} - 2 x^{3} + 24 x^{2} - 20 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 3\cdot 181 + 159\cdot 181^{2} + 49\cdot 181^{3} + 114\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 99\cdot 181 + 52\cdot 181^{2} + 35\cdot 181^{3} + 50\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 50\cdot 181 + 71\cdot 181^{2} + 130\cdot 181^{3} + 81\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 21\cdot 181 + 113\cdot 181^{2} + 133\cdot 181^{3} + 172\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 108 + 28\cdot 181 + 79\cdot 181^{2} + 146\cdot 181^{3} + 115\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 156 + 162\cdot 181 + 89\cdot 181^{2} + 132\cdot 181^{3} + 179\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 175 + 164\cdot 181 + 160\cdot 181^{2} + 96\cdot 181^{3} + 137\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 177 + 12\cdot 181 + 179\cdot 181^{2} + 179\cdot 181^{3} + 52\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(4,8)$
$(1,6)(2,8)(3,7)(4,5)$
$(1,6)(2,4)(3,7)(5,8)$
$(1,5,3,2)(4,7,8,6)$
$(1,3)(2,5)$
$(2,5)(6,7)$
$(1,2,3,5)(4,7,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,5)(4,8)(6,7)$$-4$
$2$$2$$(1,6)(2,8)(3,7)(4,5)$$0$
$2$$2$$(1,3)(2,5)$$0$
$2$$2$$(2,5)(4,8)$$0$
$2$$2$$(1,6)(2,4)(3,7)(5,8)$$0$
$2$$2$$(1,5)(2,3)(4,6)(7,8)$$0$
$2$$2$$(1,3)(4,8)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,7)(3,8)(5,6)$$0$
$2$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$2$$4$$(1,5,3,2)(4,7,8,6)$$0$
$2$$4$$(1,2,3,5)(4,7,8,6)$$0$
$2$$4$$(1,4,3,8)(2,6,5,7)$$0$
$2$$4$$(1,7,3,6)(2,8,5,4)$$0$
$2$$4$$(1,7,3,6)(2,4,5,8)$$0$
$2$$4$$(1,4,3,8)(2,7,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.