Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 20\cdot 181 + 59\cdot 181^{2} + 145\cdot 181^{3} + 94\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 154\cdot 181 + 160\cdot 181^{2} + 108\cdot 181^{3} + 154\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 57 + 160\cdot 181 + 39\cdot 181^{2} + 129\cdot 181^{3} + 40\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 70 + 72\cdot 181 + 38\cdot 181^{2} + 165\cdot 181^{3} + 102\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 76 + 11\cdot 181 + 93\cdot 181^{2} + 63\cdot 181^{3} + 83\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 79 + 176\cdot 181 + 48\cdot 181^{2} + 44\cdot 181^{3} + 29\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 117 + 46\cdot 181 + 40\cdot 181^{2} + 26\cdot 181^{3} + 42\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 118 + 82\cdot 181 + 62\cdot 181^{2} + 41\cdot 181^{3} + 176\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,8)(3,5)(6,7)$ |
| $(1,5)(2,6)(3,8)(4,7)$ |
| $(1,2)(4,8)$ |
| $(1,8)(2,4)(3,5)(6,7)$ |
| $(1,8,2,4)(3,5,7,6)$ |
| $(1,5)(2,6)(3,4)(7,8)$ |
| $(1,8,2,4)(3,6,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,8)(3,5)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,8)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,4)(7,8)$ | $0$ |
| $2$ | $2$ | $(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,4)(3,5)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $0$ |
| $2$ | $4$ | $(1,8,2,4)(3,6,7,5)$ | $0$ |
| $2$ | $4$ | $(1,7,2,3)(4,5,8,6)$ | $0$ |
| $2$ | $4$ | $(1,6,2,5)(3,8,7,4)$ | $0$ |
| $2$ | $4$ | $(1,6,2,5)(3,4,7,8)$ | $0$ |
| $2$ | $4$ | $(1,4,2,8)(3,6,7,5)$ | $0$ |
| $2$ | $4$ | $(1,7,2,3)(4,6,8,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.