Properties

Label 4.2e4_3e2_5e2_11e2.8t22.10
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$435600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} - 2 x^{5} + 18 x^{4} - 14 x^{3} + 30 x^{2} - 14 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 20\cdot 181 + 59\cdot 181^{2} + 145\cdot 181^{3} + 94\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 154\cdot 181 + 160\cdot 181^{2} + 108\cdot 181^{3} + 154\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 160\cdot 181 + 39\cdot 181^{2} + 129\cdot 181^{3} + 40\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 + 72\cdot 181 + 38\cdot 181^{2} + 165\cdot 181^{3} + 102\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 + 11\cdot 181 + 93\cdot 181^{2} + 63\cdot 181^{3} + 83\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 79 + 176\cdot 181 + 48\cdot 181^{2} + 44\cdot 181^{3} + 29\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 117 + 46\cdot 181 + 40\cdot 181^{2} + 26\cdot 181^{3} + 42\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 118 + 82\cdot 181 + 62\cdot 181^{2} + 41\cdot 181^{3} + 176\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(1,5)(2,6)(3,8)(4,7)$
$(1,2)(4,8)$
$(1,8)(2,4)(3,5)(6,7)$
$(1,8,2,4)(3,5,7,6)$
$(1,5)(2,6)(3,4)(7,8)$
$(1,8,2,4)(3,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-4$
$2$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$
$2$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $0$
$2$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$2$ $2$ $(3,7)(4,8)$ $0$
$2$ $2$ $(1,2)(4,8)$ $0$
$2$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $0$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,2)(3,7)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,8,2,4)(3,6,7,5)$ $0$
$2$ $4$ $(1,7,2,3)(4,5,8,6)$ $0$
$2$ $4$ $(1,6,2,5)(3,8,7,4)$ $0$
$2$ $4$ $(1,6,2,5)(3,4,7,8)$ $0$
$2$ $4$ $(1,4,2,8)(3,6,7,5)$ $0$
$2$ $4$ $(1,7,2,3)(4,6,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.