Properties

Label 4.2e4_3e2_241.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 241 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$34704= 2^{4} \cdot 3^{2} \cdot 241 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} - 3 x^{3} - 52 x^{2} + 9 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 30 + \left(34 a + 56\right)\cdot 61 + \left(40 a + 10\right)\cdot 61^{2} + \left(4 a + 46\right)\cdot 61^{3} + \left(17 a + 18\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 19 + \left(26 a + 41\right)\cdot 61 + \left(20 a + 16\right)\cdot 61^{2} + \left(56 a + 10\right)\cdot 61^{3} + \left(43 a + 31\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 26\cdot 61 + 38\cdot 61^{2} + 57\cdot 61^{3} + 49\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 24\cdot 61 + 33\cdot 61^{2} + 4\cdot 61^{3} + 11\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 a + 10 + \left(30 a + 60\right)\cdot 61 + 51 a\cdot 61^{2} + \left(30 a + 12\right)\cdot 61^{3} + \left(47 a + 58\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 5 + \left(30 a + 35\right)\cdot 61 + \left(9 a + 21\right)\cdot 61^{2} + \left(30 a + 52\right)\cdot 61^{3} + \left(13 a + 13\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $2$
$6$ $2$ $(2,4)$ $0$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $1$
$4$ $3$ $(3,5,6)$ $-2$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,3,2,5,4,6)$ $-1$
$12$ $6$ $(2,4)(3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.