Properties

Label 4.2e4_3e2_17e2_73e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 17^{2} \cdot 73^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$221771664= 2^{4} \cdot 3^{2} \cdot 17^{2} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 7 x^{4} + 91 x^{3} - 370 x^{2} + 1312 x - 1962 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 7\cdot 37 + 12\cdot 37^{3} + 27\cdot 37^{4} + 15\cdot 37^{5} + 20\cdot 37^{6} + 35\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 30 + \left(14 a + 25\right)\cdot 37 + \left(11 a + 17\right)\cdot 37^{2} + \left(16 a + 1\right)\cdot 37^{3} + \left(3 a + 24\right)\cdot 37^{4} + \left(21 a + 15\right)\cdot 37^{5} + 31 a\cdot 37^{6} + \left(9 a + 21\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 35 + 11\cdot 37 + 32\cdot 37^{2} + 35\cdot 37^{3} + 30\cdot 37^{4} + 4\cdot 37^{5} + 21\cdot 37^{6} + 34\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 9 + \left(18 a + 35\right)\cdot 37 + \left(23 a + 4\right)\cdot 37^{2} + \left(22 a + 25\right)\cdot 37^{3} + \left(14 a + 22\right)\cdot 37^{4} + \left(11 a + 10\right)\cdot 37^{5} + \left(9 a + 24\right)\cdot 37^{6} + \left(17 a + 2\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 25 + 22 a\cdot 37 + \left(25 a + 12\right)\cdot 37^{2} + \left(20 a + 18\right)\cdot 37^{3} + \left(33 a + 21\right)\cdot 37^{4} + \left(15 a + 22\right)\cdot 37^{5} + \left(5 a + 31\right)\cdot 37^{6} + \left(27 a + 28\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 25 + \left(18 a + 29\right)\cdot 37 + \left(13 a + 6\right)\cdot 37^{2} + \left(14 a + 18\right)\cdot 37^{3} + \left(22 a + 21\right)\cdot 37^{4} + \left(25 a + 4\right)\cdot 37^{5} + \left(27 a + 13\right)\cdot 37^{6} + \left(19 a + 25\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,5)$
$(1,6)(3,5)$
$(1,5,6,3,4,2)$
$(3,5)(4,6)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$9$$2$$(1,4)(3,5)$$0$
$2$$3$$(1,6,4)(2,5,3)$$-2$
$2$$3$$(1,6,4)(2,3,5)$$-2$
$4$$3$$(2,3,5)$$1$
$6$$6$$(1,5,6,3,4,2)$$0$
$6$$6$$(1,3,6,5,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.