Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 313 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 66 + 305\cdot 313 + 152\cdot 313^{2} + 208\cdot 313^{3} + 146\cdot 313^{4} + 211\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 97 + 311\cdot 313 + 247\cdot 313^{2} + 234\cdot 313^{3} + 183\cdot 313^{4} + 160\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 118 + 52\cdot 313 + 283\cdot 313^{2} + 79\cdot 313^{3} + 74\cdot 313^{4} + 25\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 149 + 58\cdot 313 + 65\cdot 313^{2} + 106\cdot 313^{3} + 111\cdot 313^{4} + 287\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 173 + 140\cdot 313 + 71\cdot 313^{2} + 268\cdot 313^{3} + 215\cdot 313^{4} + 146\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 183 + 223\cdot 313 + 257\cdot 313^{2} + 219\cdot 313^{3} + 188\cdot 313^{4} + 161\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 229 + 38\cdot 313 + 150\cdot 313^{2} + 91\cdot 313^{3} + 179\cdot 313^{4} + 278\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 239 + 121\cdot 313 + 23\cdot 313^{2} + 43\cdot 313^{3} + 152\cdot 313^{4} + 293\cdot 313^{5} +O\left(313^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(5,8)$ |
| $(1,5,4,8)(2,7,3,6)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3)(2,4)(5,6)(7,8)$ |
| $(1,8,4,5)(2,7,3,6)$ |
| $(1,4)(6,7)$ |
| $(1,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,8)(3,5)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(5,8)$ | $0$ |
| $2$ | $2$ | $(2,3)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,7)(3,6)(4,8)$ | $0$ |
| $2$ | $4$ | $(1,5,4,8)(2,7,3,6)$ | $0$ |
| $2$ | $4$ | $(1,8,4,5)(2,7,3,6)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)(5,7,8,6)$ | $0$ |
| $2$ | $4$ | $(1,2,4,3)(5,7,8,6)$ | $0$ |
| $2$ | $4$ | $(1,7,4,6)(2,8,3,5)$ | $0$ |
| $2$ | $4$ | $(1,6,4,7)(2,8,3,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.