Properties

Label 4.2e4_3e2_103.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 103 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$14832= 2^{4} \cdot 3^{2} \cdot 103 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 7 x^{4} + 38 x^{3} - 14 x^{2} - 120 x + 122 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 26\cdot 31 + 6\cdot 31^{2} + 10\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 26 + \left(20 a + 10\right)\cdot 31 + \left(5 a + 1\right)\cdot 31^{2} + \left(18 a + 26\right)\cdot 31^{3} + \left(3 a + 3\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 14 + 9\cdot 31 + \left(28 a + 16\right)\cdot 31^{2} + \left(3 a + 25\right)\cdot 31^{3} + \left(5 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 28\cdot 31 + 4\cdot 31^{2} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 19 + \left(30 a + 23\right)\cdot 31 + \left(2 a + 9\right)\cdot 31^{2} + \left(27 a + 5\right)\cdot 31^{3} + \left(25 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 20 + \left(10 a + 24\right)\cdot 31 + \left(25 a + 22\right)\cdot 31^{2} + \left(12 a + 25\right)\cdot 31^{3} + \left(27 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $2$
$6$ $2$ $(4,5)$ $0$
$9$ $2$ $(2,6)(4,5)$ $0$
$4$ $3$ $(3,4,5)$ $-2$
$4$ $3$ $(1,2,6)(3,4,5)$ $1$
$18$ $4$ $(1,3)(2,4,6,5)$ $0$
$12$ $6$ $(1,3,2,4,6,5)$ $-1$
$12$ $6$ $(1,2,6)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.