Properties

Label 4.2e4_3_97e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3 \cdot 97^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$451632= 2^{4} \cdot 3 \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 6 x^{3} + 5 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 42 + \left(31 a + 26\right)\cdot 73 + \left(36 a + 43\right)\cdot 73^{2} + \left(9 a + 17\right)\cdot 73^{3} + \left(62 a + 56\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 24 + \left(56 a + 17\right)\cdot 73 + \left(49 a + 2\right)\cdot 73^{2} + \left(44 a + 8\right)\cdot 73^{3} + \left(10 a + 46\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 a + 27 + \left(16 a + 38\right)\cdot 73 + \left(23 a + 22\right)\cdot 73^{2} + \left(28 a + 19\right)\cdot 73^{3} + \left(62 a + 33\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 17\cdot 73 + 48\cdot 73^{2} + 45\cdot 73^{3} + 66\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 6\cdot 73 + 54\cdot 73^{2} + 45\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 a + 63 + \left(41 a + 39\right)\cdot 73 + \left(36 a + 48\right)\cdot 73^{2} + \left(63 a + 9\right)\cdot 73^{3} + \left(10 a + 14\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(3,4)$$0$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,5,6)(2,3,4)$$1$
$4$$3$$(1,5,6)$$-2$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,3,5,4,6,2)$$-1$
$12$$6$$(1,5,6)(3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.