Properties

Label 4.2e4_3_7e2_19.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$44688= 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.3_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 28 + \left(8 a + 19\right)\cdot 29 + \left(19 a + 3\right)\cdot 29^{2} + \left(26 a + 23\right)\cdot 29^{3} + \left(13 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 3 + \left(20 a + 11\right)\cdot 29 + \left(9 a + 4\right)\cdot 29^{2} + \left(2 a + 21\right)\cdot 29^{3} + \left(15 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 4\cdot 29 + 12\cdot 29^{2} + 10\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 14\cdot 29 + 29^{2} + 11\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 4 + 12\cdot 29 + \left(11 a + 5\right)\cdot 29^{2} + \left(19 a + 11\right)\cdot 29^{3} + \left(17 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 17 + \left(28 a + 24\right)\cdot 29 + \left(17 a + 1\right)\cdot 29^{2} + \left(9 a + 10\right)\cdot 29^{3} + \left(11 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(3,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$0$
$6$$2$$(2,4)$$2$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)(3,5,6)$$-2$
$4$$3$$(1,2,4)$$1$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,5,2,6,4,3)$$0$
$12$$6$$(2,4)(3,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.