Properties

Label 4.2e4_3_7e2_19.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$44688= 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 7 x^{3} + 7 x^{2} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.3_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 17 + \left(17 a + 3\right)\cdot 29 + \left(17 a + 5\right)\cdot 29^{2} + \left(4 a + 14\right)\cdot 29^{3} + \left(9 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 28\cdot 29 + 3\cdot 29^{2} + 4\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 28\cdot 29 + 5\cdot 29^{2} + 24\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 5 + \left(17 a + 11\right)\cdot 29 + \left(15 a + 11\right)\cdot 29^{2} + \left(11 a + 20\right)\cdot 29^{3} + \left(5 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 9 + \left(11 a + 18\right)\cdot 29 + \left(13 a + 13\right)\cdot 29^{2} + \left(17 a + 4\right)\cdot 29^{3} + \left(23 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 18 + \left(11 a + 25\right)\cdot 29 + \left(11 a + 17\right)\cdot 29^{2} + \left(24 a + 19\right)\cdot 29^{3} + \left(19 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(3,6)$$0$
$9$$2$$(3,6)(4,5)$$0$
$4$$3$$(1,3,6)$$-2$
$4$$3$$(1,3,6)(2,4,5)$$1$
$18$$4$$(1,2)(3,5,6,4)$$0$
$12$$6$$(1,4,3,5,6,2)$$-1$
$12$$6$$(2,4,5)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.