Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 a + 17 + \left(17 a + 3\right)\cdot 29 + \left(17 a + 5\right)\cdot 29^{2} + \left(4 a + 14\right)\cdot 29^{3} + \left(9 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 28\cdot 29 + 3\cdot 29^{2} + 4\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 + 28\cdot 29 + 5\cdot 29^{2} + 24\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 a + 5 + \left(17 a + 11\right)\cdot 29 + \left(15 a + 11\right)\cdot 29^{2} + \left(11 a + 20\right)\cdot 29^{3} + \left(5 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 9 + \left(11 a + 18\right)\cdot 29 + \left(13 a + 13\right)\cdot 29^{2} + \left(17 a + 4\right)\cdot 29^{3} + \left(23 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 23 a + 18 + \left(11 a + 25\right)\cdot 29 + \left(11 a + 17\right)\cdot 29^{2} + \left(24 a + 19\right)\cdot 29^{3} + \left(19 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(1,3)$ |
| $(1,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$2$ |
| $6$ |
$2$ |
$(3,6)$ |
$0$ |
| $9$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,6)$ |
$-2$ |
| $4$ |
$3$ |
$(1,3,6)(2,4,5)$ |
$1$ |
| $18$ |
$4$ |
$(1,2)(3,5,6,4)$ |
$0$ |
| $12$ |
$6$ |
$(1,4,3,5,6,2)$ |
$-1$ |
| $12$ |
$6$ |
$(2,4,5)(3,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.