Properties

Label 4.2e4_29e3.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 29^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$390224= 2^{4} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{3} + 4 x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(9 a + 2\right)\cdot 13 + \left(a + 6\right)\cdot 13^{2} + \left(12 a + 3\right)\cdot 13^{3} + \left(10 a + 12\right)\cdot 13^{4} + \left(4 a + 1\right)\cdot 13^{5} + \left(10 a + 11\right)\cdot 13^{6} + \left(6 a + 3\right)\cdot 13^{7} + \left(3 a + 3\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 1 + \left(3 a + 10\right)\cdot 13 + \left(11 a + 11\right)\cdot 13^{2} + \left(2 a + 11\right)\cdot 13^{4} + \left(8 a + 8\right)\cdot 13^{5} + \left(2 a + 3\right)\cdot 13^{6} + 6 a\cdot 13^{7} + 9 a\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 8 + \left(5 a + 6\right)\cdot 13 + \left(11 a + 6\right)\cdot 13^{2} + 4\cdot 13^{3} + 7 a\cdot 13^{4} + \left(2 a + 12\right)\cdot 13^{5} + \left(6 a + 10\right)\cdot 13^{6} + \left(4 a + 9\right)\cdot 13^{7} + 5\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 12 + \left(7 a + 7\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + \left(12 a + 6\right)\cdot 13^{3} + \left(5 a + 6\right)\cdot 13^{4} + \left(10 a + 7\right)\cdot 13^{5} + \left(6 a + 1\right)\cdot 13^{6} + \left(8 a + 8\right)\cdot 13^{7} + \left(12 a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 + 12\cdot 13 + 13^{2} + 10\cdot 13^{3} + 8\cdot 13^{4} + 8\cdot 13^{5} + 11\cdot 13^{6} + 3\cdot 13^{7} + 2\cdot 13^{8} +O\left(13^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(2,5,3,4)$
$(2,3)(4,5)$
$(1,4,3,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,3)(2,5)$$0$
$5$$4$$(1,2,3,5)$$0$
$5$$4$$(1,5,3,2)$$0$
$4$$5$$(1,4,3,2,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.