Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ a + \left(9 a + 2\right)\cdot 13 + \left(a + 6\right)\cdot 13^{2} + \left(12 a + 3\right)\cdot 13^{3} + \left(10 a + 12\right)\cdot 13^{4} + \left(4 a + 1\right)\cdot 13^{5} + \left(10 a + 11\right)\cdot 13^{6} + \left(6 a + 3\right)\cdot 13^{7} + \left(3 a + 3\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 a + 1 + \left(3 a + 10\right)\cdot 13 + \left(11 a + 11\right)\cdot 13^{2} + \left(2 a + 11\right)\cdot 13^{4} + \left(8 a + 8\right)\cdot 13^{5} + \left(2 a + 3\right)\cdot 13^{6} + 6 a\cdot 13^{7} + 9 a\cdot 13^{8} +O\left(13^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 8 + \left(5 a + 6\right)\cdot 13 + \left(11 a + 6\right)\cdot 13^{2} + 4\cdot 13^{3} + 7 a\cdot 13^{4} + \left(2 a + 12\right)\cdot 13^{5} + \left(6 a + 10\right)\cdot 13^{6} + \left(4 a + 9\right)\cdot 13^{7} + 5\cdot 13^{8} +O\left(13^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a + 12 + \left(7 a + 7\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + \left(12 a + 6\right)\cdot 13^{3} + \left(5 a + 6\right)\cdot 13^{4} + \left(10 a + 7\right)\cdot 13^{5} + \left(6 a + 1\right)\cdot 13^{6} + \left(8 a + 8\right)\cdot 13^{7} + \left(12 a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 + 12\cdot 13 + 13^{2} + 10\cdot 13^{3} + 8\cdot 13^{4} + 8\cdot 13^{5} + 11\cdot 13^{6} + 3\cdot 13^{7} + 2\cdot 13^{8} +O\left(13^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(2,5,3,4)$ |
| $(2,3)(4,5)$ |
| $(1,4,3,2,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $5$ |
$2$ |
$(1,3)(2,5)$ |
$0$ |
| $5$ |
$4$ |
$(1,2,3,5)$ |
$0$ |
| $5$ |
$4$ |
$(1,5,3,2)$ |
$0$ |
| $4$ |
$5$ |
$(1,4,3,2,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.