Properties

Label 4.2e4_23e2_29e2.6t9.2c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 23^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$7118224= 2^{4} \cdot 23^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 52 x^{3} - 52 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 4 + \left(a + 5\right)\cdot 7 + 5 a\cdot 7^{2} + \left(5 a + 3\right)\cdot 7^{3} + \left(a + 4\right)\cdot 7^{4} + \left(4 a + 4\right)\cdot 7^{5} + 5\cdot 7^{6} + \left(a + 5\right)\cdot 7^{7} + \left(5 a + 2\right)\cdot 7^{8} + 6\cdot 7^{9} + 5\cdot 7^{10} + \left(5 a + 1\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 2 }$ $=$ $ a + 5 + \left(6 a + 5\right)\cdot 7 + \left(3 a + 6\right)\cdot 7^{2} + \left(2 a + 5\right)\cdot 7^{3} + 5 a\cdot 7^{4} + \left(a + 5\right)\cdot 7^{5} + \left(4 a + 6\right)\cdot 7^{6} + \left(4 a + 6\right)\cdot 7^{7} + 5 a\cdot 7^{8} + \left(5 a + 4\right)\cdot 7^{9} + \left(3 a + 1\right)\cdot 7^{10} + \left(3 a + 4\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 5 + \left(5 a + 5\right)\cdot 7 + \left(a + 4\right)\cdot 7^{2} + \left(a + 3\right)\cdot 7^{3} + 5 a\cdot 7^{4} + 2 a\cdot 7^{5} + \left(6 a + 2\right)\cdot 7^{6} + \left(5 a + 6\right)\cdot 7^{7} + \left(a + 6\right)\cdot 7^{8} + \left(6 a + 1\right)\cdot 7^{9} + \left(6 a + 5\right)\cdot 7^{10} + \left(a + 6\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 6 + 2\cdot 7 + 7^{2} + 2\cdot 7^{4} + 2\cdot 7^{5} + 6\cdot 7^{6} + 7^{7} + 4\cdot 7^{8} + 5\cdot 7^{9} + 2\cdot 7^{10} + 5\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 6 + 3\cdot 7 + \left(3 a + 4\right)\cdot 7^{2} + \left(4 a + 4\right)\cdot 7^{3} + \left(a + 3\right)\cdot 7^{4} + \left(5 a + 1\right)\cdot 7^{5} + \left(2 a + 2\right)\cdot 7^{6} + 2 a\cdot 7^{7} + \left(a + 2\right)\cdot 7^{8} + \left(a + 4\right)\cdot 7^{9} + \left(3 a + 6\right)\cdot 7^{10} + \left(3 a + 3\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 4 + 4\cdot 7 + 2\cdot 7^{2} + 3\cdot 7^{3} + 2\cdot 7^{4} + 5\cdot 7^{6} + 6\cdot 7^{7} + 3\cdot 7^{8} + 5\cdot 7^{9} + 5\cdot 7^{10} + 5\cdot 7^{11} +O\left(7^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6,5)$
$(1,4,3)$
$(3,4)(5,6)$
$(1,5,4,2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$9$$2$$(3,4)(5,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-2$
$2$$3$$(1,3,4)(2,6,5)$$-2$
$4$$3$$(1,4,3)$$1$
$6$$6$$(1,5,4,2,3,6)$$0$
$6$$6$$(1,2,3,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.