Properties

Label 4.2e4_17e2_47e3.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 17^{2} \cdot 47^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$480077552= 2^{4} \cdot 17^{2} \cdot 47^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 9 x^{4} - 12 x^{3} + 12 x^{2} - 10 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 16 + \left(42 a + 6\right)\cdot 59 + \left(13 a + 19\right)\cdot 59^{2} + \left(5 a + 11\right)\cdot 59^{3} + \left(40 a + 47\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 49\cdot 59 + 25\cdot 59^{2} + 3\cdot 59^{3} + 24\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 4\cdot 59 + 29\cdot 59^{2} + 52\cdot 59^{3} + 32\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 a + \left(25 a + 44\right)\cdot 59 + \left(30 a + 24\right)\cdot 59^{2} + \left(31 a + 23\right)\cdot 59^{3} + \left(4 a + 38\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 57 + \left(33 a + 12\right)\cdot 59 + \left(28 a + 29\right)\cdot 59^{2} + \left(27 a + 24\right)\cdot 59^{3} + \left(54 a + 11\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 6 + 16 a\cdot 59 + \left(45 a + 49\right)\cdot 59^{2} + \left(53 a + 2\right)\cdot 59^{3} + \left(18 a + 23\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,6)$ $-2$
$4$ $3$ $(1,3,6)(2,4,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,4,3,5,6,2)$ $1$
$12$ $6$ $(1,3)(2,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.