Basic invariants
| Dimension: | $4$ |
| Group: | $C_3^2:D_4$ |
| Conductor: | \(480077552\)\(\medspace = 2^{4} \cdot 17^{2} \cdot 47^{3} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.4.3694576.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 12T34 |
| Parity: | odd |
| Projective image: | $\SOPlus(4,2)$ |
| Projective field: | Galois closure of 6.4.3694576.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$:
\( x^{2} + 58x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 20 + 47\cdot 59 + 56\cdot 59^{2} + 23\cdot 59^{3} + 23\cdot 59^{4} +O(59^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 56 a + 29 + \left(37 a + 23\right)\cdot 59 + \left(53 a + 51\right)\cdot 59^{2} + \left(18 a + 16\right)\cdot 59^{3} + \left(32 a + 1\right)\cdot 59^{4} +O(59^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 3 a + 26 + \left(21 a + 5\right)\cdot 59 + \left(5 a + 8\right)\cdot 59^{2} + \left(40 a + 41\right)\cdot 59^{3} + \left(26 a + 14\right)\cdot 59^{4} +O(59^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 53 a + 47 + \left(2 a + 51\right)\cdot 59 + \left(14 a + 20\right)\cdot 59^{2} + \left(34 a + 39\right)\cdot 59^{3} + \left(11 a + 40\right)\cdot 59^{4} +O(59^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 6 a + 41 + \left(56 a + 1\right)\cdot 59 + \left(44 a + 32\right)\cdot 59^{2} + 24 a\cdot 59^{3} + \left(47 a + 18\right)\cdot 59^{4} +O(59^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 15 + 47\cdot 59 + 7\cdot 59^{2} + 55\cdot 59^{3} + 19\cdot 59^{4} +O(59^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $4$ |
| $6$ | $2$ | $(1,4)(2,5)(3,6)$ | $0$ |
| $6$ | $2$ | $(2,3)$ | $-2$ |
| $9$ | $2$ | $(2,3)(5,6)$ | $0$ |
| $4$ | $3$ | $(1,2,3)$ | $1$ |
| $4$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
| $18$ | $4$ | $(1,4)(2,6,3,5)$ | $0$ |
| $12$ | $6$ | $(1,5,2,6,3,4)$ | $0$ |
| $12$ | $6$ | $(2,3)(4,5,6)$ | $1$ |