Properties

Label 4.480077552.12t34.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $480077552$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:\(480077552\)\(\medspace = 2^{4} \cdot 17^{2} \cdot 47^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.4.3694576.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: odd
Projective image: $\SOPlus(4,2)$
Projective field: Galois closure of 6.4.3694576.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: \( x^{2} + 58x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 20 + 47\cdot 59 + 56\cdot 59^{2} + 23\cdot 59^{3} + 23\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 56 a + 29 + \left(37 a + 23\right)\cdot 59 + \left(53 a + 51\right)\cdot 59^{2} + \left(18 a + 16\right)\cdot 59^{3} + \left(32 a + 1\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 26 + \left(21 a + 5\right)\cdot 59 + \left(5 a + 8\right)\cdot 59^{2} + \left(40 a + 41\right)\cdot 59^{3} + \left(26 a + 14\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 53 a + 47 + \left(2 a + 51\right)\cdot 59 + \left(14 a + 20\right)\cdot 59^{2} + \left(34 a + 39\right)\cdot 59^{3} + \left(11 a + 40\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 41 + \left(56 a + 1\right)\cdot 59 + \left(44 a + 32\right)\cdot 59^{2} + 24 a\cdot 59^{3} + \left(47 a + 18\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 + 47\cdot 59 + 7\cdot 59^{2} + 55\cdot 59^{3} + 19\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $0$
$6$ $2$ $(2,3)$ $-2$
$9$ $2$ $(2,3)(5,6)$ $0$
$4$ $3$ $(1,2,3)$ $1$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$18$ $4$ $(1,4)(2,6,3,5)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $0$
$12$ $6$ $(2,3)(4,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.