Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 29\cdot 53 + 32\cdot 53^{2} + 9\cdot 53^{4} + 43\cdot 53^{5} + 29\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 44\cdot 53 + 16\cdot 53^{2} + 31\cdot 53^{3} + 41\cdot 53^{4} + 50\cdot 53^{5} + 21\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 + 41\cdot 53 + 39\cdot 53^{2} + 27\cdot 53^{3} + 30\cdot 53^{4} + 52\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 21 + 5\cdot 53 + 3\cdot 53^{2} + 29\cdot 53^{3} + 38\cdot 53^{4} + 22\cdot 53^{5} + 32\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 22 + 39\cdot 53 + 5\cdot 53^{2} + 17\cdot 53^{3} + 24\cdot 53^{4} + 53^{5} + 3\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 24 + 45\cdot 53 + 5\cdot 53^{2} + 52\cdot 53^{3} + 22\cdot 53^{4} + 51\cdot 53^{5} + 11\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 27 + 35\cdot 53 + 53^{2} + 20\cdot 53^{3} + 38\cdot 53^{4} + 13\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 41 + 24\cdot 53 + 34\cdot 53^{3} + 6\cdot 53^{4} + 42\cdot 53^{5} + 12\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5)(2,4)(3,7)(6,8)$ |
| $(1,7)(4,6)$ |
| $(1,4,7,6)(2,3,8,5)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,8,4,3,7,2,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $-4$ |
| $2$ | $2$ | $(1,7)(4,6)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,4)(3,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,8)(4,7)$ | $0$ |
| $4$ | $2$ | $(2,5)(3,8)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,4,7,6)(2,3,8,5)$ | $0$ |
| $2$ | $4$ | $(1,6,7,4)(2,3,8,5)$ | $0$ |
| $4$ | $4$ | $(1,5,7,3)(2,6,8,4)$ | $0$ |
| $4$ | $8$ | $(1,5,6,2,7,3,4,8)$ | $0$ |
| $4$ | $8$ | $(1,3,4,2,7,5,6,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.