Properties

Label 4.2e4_17e2_37e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 17^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$6330256= 2^{4} \cdot 17^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 3 x^{6} + 9 x^{4} + 28 x^{3} - 89 x^{2} - 36 x + 149 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 6 + 29\cdot 53 + 32\cdot 53^{2} + 9\cdot 53^{4} + 43\cdot 53^{5} + 29\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 + 44\cdot 53 + 16\cdot 53^{2} + 31\cdot 53^{3} + 41\cdot 53^{4} + 50\cdot 53^{5} + 21\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 + 41\cdot 53 + 39\cdot 53^{2} + 27\cdot 53^{3} + 30\cdot 53^{4} + 52\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 21 + 5\cdot 53 + 3\cdot 53^{2} + 29\cdot 53^{3} + 38\cdot 53^{4} + 22\cdot 53^{5} + 32\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 22 + 39\cdot 53 + 5\cdot 53^{2} + 17\cdot 53^{3} + 24\cdot 53^{4} + 53^{5} + 3\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 + 45\cdot 53 + 5\cdot 53^{2} + 52\cdot 53^{3} + 22\cdot 53^{4} + 51\cdot 53^{5} + 11\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 27 + 35\cdot 53 + 53^{2} + 20\cdot 53^{3} + 38\cdot 53^{4} + 13\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 41 + 24\cdot 53 + 34\cdot 53^{3} + 6\cdot 53^{4} + 42\cdot 53^{5} + 12\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,4)(3,7)(6,8)$
$(1,7)(4,6)$
$(1,4,7,6)(2,3,8,5)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,8,4,3,7,2,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-4$
$2$ $2$ $(1,7)(4,6)$ $0$
$4$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $0$
$4$ $2$ $(1,6)(2,8)(4,7)$ $0$
$4$ $2$ $(2,5)(3,8)(4,6)$ $0$
$2$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
$2$ $4$ $(1,6,7,4)(2,3,8,5)$ $0$
$4$ $4$ $(1,5,7,3)(2,6,8,4)$ $0$
$4$ $8$ $(1,5,6,2,7,3,4,8)$ $0$
$4$ $8$ $(1,3,4,2,7,5,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.