Properties

Label 4.2e4_17e2_37e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 17^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$6330256= 2^{4} \cdot 17^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 5 x^{6} + 24 x^{5} + 16 x^{4} - 72 x^{3} - 36 x^{2} + 74 x + 53 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 5\cdot 53 + 40\cdot 53^{2} + 7\cdot 53^{3} + 36\cdot 53^{4} + 9\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 1 + 49\cdot 53 + 34\cdot 53^{2} + 37\cdot 53^{3} + 42\cdot 53^{4} + 35\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 + 53 + 10\cdot 53^{2} + 33\cdot 53^{3} + 48\cdot 53^{4} + 35\cdot 53^{5} + 8\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 18 + 46\cdot 53 + 7\cdot 53^{2} + 22\cdot 53^{3} + 43\cdot 53^{4} + 17\cdot 53^{5} + 45\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 19 + 28\cdot 53 + 33\cdot 53^{2} + 4\cdot 53^{3} + 30\cdot 53^{4} + 40\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 34 + 51\cdot 53 + 8\cdot 53^{2} + 37\cdot 53^{3} + 37\cdot 53^{4} + 24\cdot 53^{5} + 3\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 36 + 13\cdot 53 + 34\cdot 53^{2} + 40\cdot 53^{3} + 37\cdot 53^{4} + 12\cdot 53^{5} + 29\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 44 + 16\cdot 53 + 42\cdot 53^{2} + 28\cdot 53^{3} + 41\cdot 53^{4} + 43\cdot 53^{5} + 48\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(6,8)$
$(1,8,7,6)(2,5,3,4)$
$(1,7)(2,3)(4,5)(6,8)$
$(1,4,7,5)(2,8,3,6)$
$(1,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,3)(4,5)(6,8)$$-4$
$2$$2$$(1,7)(6,8)$$0$
$4$$2$$(1,8)(4,5)(6,7)$$0$
$4$$2$$(1,5)(2,8)(3,6)(4,7)$$0$
$4$$2$$(1,6)(4,5)(7,8)$$0$
$2$$4$$(1,8,7,6)(2,5,3,4)$$0$
$2$$4$$(1,6,7,8)(2,5,3,4)$$0$
$4$$4$$(1,4,7,5)(2,8,3,6)$$0$
$4$$8$$(1,5,8,3,7,4,6,2)$$0$
$4$$8$$(1,4,6,3,7,5,8,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.