Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5\cdot 53 + 40\cdot 53^{2} + 7\cdot 53^{3} + 36\cdot 53^{4} + 9\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 1 + 49\cdot 53 + 34\cdot 53^{2} + 37\cdot 53^{3} + 42\cdot 53^{4} + 35\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 + 53 + 10\cdot 53^{2} + 33\cdot 53^{3} + 48\cdot 53^{4} + 35\cdot 53^{5} + 8\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 + 46\cdot 53 + 7\cdot 53^{2} + 22\cdot 53^{3} + 43\cdot 53^{4} + 17\cdot 53^{5} + 45\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 + 28\cdot 53 + 33\cdot 53^{2} + 4\cdot 53^{3} + 30\cdot 53^{4} + 40\cdot 53^{5} + 33\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 34 + 51\cdot 53 + 8\cdot 53^{2} + 37\cdot 53^{3} + 37\cdot 53^{4} + 24\cdot 53^{5} + 3\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 36 + 13\cdot 53 + 34\cdot 53^{2} + 40\cdot 53^{3} + 37\cdot 53^{4} + 12\cdot 53^{5} + 29\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 44 + 16\cdot 53 + 42\cdot 53^{2} + 28\cdot 53^{3} + 41\cdot 53^{4} + 43\cdot 53^{5} + 48\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(6,8)$ |
| $(1,8,7,6)(2,5,3,4)$ |
| $(1,7)(2,3)(4,5)(6,8)$ |
| $(1,4,7,5)(2,8,3,6)$ |
| $(1,8)(4,5)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,3)(4,5)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,8)(4,5)(6,7)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,8)(3,6)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,6)(4,5)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,8,7,6)(2,5,3,4)$ | $0$ |
| $2$ | $4$ | $(1,6,7,8)(2,5,3,4)$ | $0$ |
| $4$ | $4$ | $(1,4,7,5)(2,8,3,6)$ | $0$ |
| $4$ | $8$ | $(1,5,8,3,7,4,6,2)$ | $0$ |
| $4$ | $8$ | $(1,4,6,3,7,5,8,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.