Properties

Label 4.2e4_17e2_29e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 17^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$3888784= 2^{4} \cdot 17^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} + 14 x^{5} + 15 x^{4} - 48 x^{3} - 17 x^{2} + 96 x + 73 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 32\cdot 53 + 9\cdot 53^{2} + 19\cdot 53^{3} + 47\cdot 53^{4} + 50\cdot 53^{5} + 10\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 + 37\cdot 53 + 19\cdot 53^{2} + 47\cdot 53^{3} + 33\cdot 53^{4} + 43\cdot 53^{5} + 39\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 11 + 50\cdot 53 + 11\cdot 53^{2} + 10\cdot 53^{3} + 51\cdot 53^{4} + 48\cdot 53^{5} + 27\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 19 + 8\cdot 53 + 20\cdot 53^{2} + 31\cdot 53^{3} + 44\cdot 53^{4} + 20\cdot 53^{5} + 21\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 + 44\cdot 53 + 39\cdot 53^{2} + 47\cdot 53^{3} + 15\cdot 53^{4} + 7\cdot 53^{5} + 22\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 + 11\cdot 53 + 21\cdot 53^{2} + 40\cdot 53^{3} + 51\cdot 53^{4} + 26\cdot 53^{5} + 41\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 27 + 5\cdot 53 + 45\cdot 53^{2} + 20\cdot 53^{3} + 32\cdot 53^{4} + 39\cdot 53^{5} + 42\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 51 + 22\cdot 53 + 44\cdot 53^{2} + 47\cdot 53^{3} + 40\cdot 53^{4} + 26\cdot 53^{5} + 5\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,3)$
$(1,5,7,6)(2,4,3,8)$
$(1,7)(2,3)(4,8)(5,6)$
$(1,4,3,6,7,8,2,5)$
$(1,3,7,2)(4,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,3)(4,8)(5,6)$$-4$
$2$$2$$(1,7)(2,3)$$0$
$4$$2$$(1,2)(3,7)(5,6)$$0$
$4$$2$$(2,3)(4,5)(6,8)$$0$
$4$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,3,7,2)(4,6,8,5)$$0$
$2$$4$$(1,3,7,2)(4,5,8,6)$$0$
$4$$4$$(1,6,7,5)(2,8,3,4)$$0$
$4$$8$$(1,4,3,6,7,8,2,5)$$0$
$4$$8$$(1,5,3,4,7,6,2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.