Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 32\cdot 53 + 9\cdot 53^{2} + 19\cdot 53^{3} + 47\cdot 53^{4} + 50\cdot 53^{5} + 10\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 + 37\cdot 53 + 19\cdot 53^{2} + 47\cdot 53^{3} + 33\cdot 53^{4} + 43\cdot 53^{5} + 39\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 50\cdot 53 + 11\cdot 53^{2} + 10\cdot 53^{3} + 51\cdot 53^{4} + 48\cdot 53^{5} + 27\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 8\cdot 53 + 20\cdot 53^{2} + 31\cdot 53^{3} + 44\cdot 53^{4} + 20\cdot 53^{5} + 21\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 20 + 44\cdot 53 + 39\cdot 53^{2} + 47\cdot 53^{3} + 15\cdot 53^{4} + 7\cdot 53^{5} + 22\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 24 + 11\cdot 53 + 21\cdot 53^{2} + 40\cdot 53^{3} + 51\cdot 53^{4} + 26\cdot 53^{5} + 41\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 27 + 5\cdot 53 + 45\cdot 53^{2} + 20\cdot 53^{3} + 32\cdot 53^{4} + 39\cdot 53^{5} + 42\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 51 + 22\cdot 53 + 44\cdot 53^{2} + 47\cdot 53^{3} + 40\cdot 53^{4} + 26\cdot 53^{5} + 5\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,3)$ |
| $(1,5,7,6)(2,4,3,8)$ |
| $(1,7)(2,3)(4,8)(5,6)$ |
| $(1,4,3,6,7,8,2,5)$ |
| $(1,3,7,2)(4,5,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,7)(2,3)(4,8)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(2,3)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,7)(5,6)$ |
$0$ |
| $4$ |
$2$ |
$(2,3)(4,5)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(2,5)(3,6)(4,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,7,2)(4,6,8,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,7,2)(4,5,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,7,5)(2,8,3,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,3,6,7,8,2,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,3,4,7,6,2,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.