Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13\cdot 53 + 24\cdot 53^{2} + 5\cdot 53^{3} + 18\cdot 53^{4} + 44\cdot 53^{5} + 13\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 + 4\cdot 53 + 43\cdot 53^{2} + 18\cdot 53^{3} + 17\cdot 53^{4} + 6\cdot 53^{5} + 41\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 24\cdot 53 + 30\cdot 53^{2} + 34\cdot 53^{3} + 8\cdot 53^{4} + 46\cdot 53^{5} + 39\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 + 34\cdot 53 + 25\cdot 53^{2} + 43\cdot 53^{3} + 19\cdot 53^{4} + 41\cdot 53^{5} + 39\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 34 + 24\cdot 53 + 38\cdot 53^{2} + 12\cdot 53^{3} + 37\cdot 53^{4} + 30\cdot 53^{5} + 51\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 36 + 6\cdot 53 + 26\cdot 53^{2} + 13\cdot 53^{3} + 48\cdot 53^{4} + 16\cdot 53^{5} + 28\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 41 + 52\cdot 53 + 5\cdot 53^{2} + 14\cdot 53^{3} + 12\cdot 53^{4} + 51\cdot 53^{5} + 27\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 42 + 51\cdot 53 + 17\cdot 53^{2} + 16\cdot 53^{3} + 50\cdot 53^{4} + 27\cdot 53^{5} + 22\cdot 53^{6} +O\left(53^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,8)(4,7)(5,6)$ |
| $(1,8,7,6,3,2,4,5)$ |
| $(1,7,3,4)(2,6,8,5)$ |
| $(1,6)(2,4)(3,5)(7,8)$ |
| $(1,3)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,8)(4,7)(5,6)$ | $-4$ |
| $2$ | $2$ | $(1,3)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,7)(3,4)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,4)(3,5)(7,8)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,6)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,7,3,4)(2,5,8,6)$ | $0$ |
| $2$ | $4$ | $(1,7,3,4)(2,6,8,5)$ | $0$ |
| $4$ | $4$ | $(1,6,3,5)(2,7,8,4)$ | $0$ |
| $4$ | $8$ | $(1,8,7,6,3,2,4,5)$ | $0$ |
| $4$ | $8$ | $(1,8,4,5,3,2,7,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.