Properties

Label 4.2e4_13e2_19e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 13^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$976144= 2^{4} \cdot 13^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} - 16 x^{2} + 23 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 17\cdot 29 + 10\cdot 29^{2} + 16\cdot 29^{3} + 3\cdot 29^{4} + 20\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 15 + 18\cdot 29 + \left(7 a + 6\right)\cdot 29^{2} + 28\cdot 29^{3} + \left(12 a + 2\right)\cdot 29^{4} + \left(14 a + 1\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 23 + \left(28 a + 2\right)\cdot 29 + \left(21 a + 12\right)\cdot 29^{2} + \left(28 a + 22\right)\cdot 29^{3} + \left(16 a + 4\right)\cdot 29^{4} + \left(14 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 15\cdot 29 + 28\cdot 29^{2} + 4\cdot 29^{3} + 18\cdot 29^{4} + 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 6 + \left(24 a + 20\right)\cdot 29 + \left(11 a + 11\right)\cdot 29^{2} + \left(2 a + 7\right)\cdot 29^{3} + \left(16 a + 4\right)\cdot 29^{4} + \left(20 a + 16\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 18 + \left(4 a + 12\right)\cdot 29 + \left(17 a + 17\right)\cdot 29^{2} + \left(26 a + 7\right)\cdot 29^{3} + \left(12 a + 24\right)\cdot 29^{4} + \left(8 a + 15\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(2,3)(4,5)$
$(4,5,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$9$$2$$(1,3)(5,6)$$0$
$2$$3$$(1,2,3)(4,5,6)$$-2$
$2$$3$$(1,2,3)(4,6,5)$$-2$
$4$$3$$(4,5,6)$$1$
$6$$6$$(1,5,2,6,3,4)$$0$
$6$$6$$(1,6,2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.