Properties

Label 4.2e4_13e2_17e3.8t21.7c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 13^{2} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$13284752= 2^{4} \cdot 13^{2} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} - 11 x^{4} - 48 x^{3} + 36 x^{2} + 240 x + 212 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 37 + 57\cdot 157 + 98\cdot 157^{2} + 141\cdot 157^{3} + 56\cdot 157^{4} + 68\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 79 + 156\cdot 157 + 98\cdot 157^{2} + 148\cdot 157^{3} + 25\cdot 157^{4} + 7\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 86 + 26\cdot 157 + 10\cdot 157^{2} + 84\cdot 157^{3} + 114\cdot 157^{4} + 86\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 87 + 66\cdot 157 + 121\cdot 157^{2} + 73\cdot 157^{3} + 134\cdot 157^{4} + 45\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 91 + 40\cdot 157 + 131\cdot 157^{2} + 108\cdot 157^{3} + 60\cdot 157^{4} + 51\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 115 + 112\cdot 157 + 121\cdot 157^{2} + 59\cdot 157^{3} + 139\cdot 157^{4} + 42\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 139 + 103\cdot 157 + 22\cdot 157^{2} + 64\cdot 157^{3} + 95\cdot 157^{4} + 102\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 151 + 63\cdot 157 + 23\cdot 157^{2} + 104\cdot 157^{3} + 66\cdot 157^{5} +O\left(157^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,7)(5,6)$
$(1,3)(2,5)(4,6)(7,8)$
$(1,4)(3,5,6,8)$
$(3,6)(5,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,7)(3,6)(5,8)$$-4$
$2$$2$$(1,2)(3,8)(4,7)(5,6)$$0$
$2$$2$$(3,6)(5,8)$$0$
$2$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$4$$2$$(1,3)(2,5)(4,6)(7,8)$$0$
$4$$4$$(1,5,2,6)(3,4,8,7)$$0$
$4$$4$$(1,6,2,5)(3,7,8,4)$$0$
$4$$4$$(1,6,4,3)(2,8,7,5)$$0$
$4$$4$$(1,4)(3,5,6,8)$$0$
$4$$4$$(1,4)(3,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.