Properties

Label 4.2e4_13e2_17e2.8t15.4c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 13^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$781456= 2^{4} \cdot 13^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + x^{6} + 8 x^{5} + 5 x^{4} - 14 x^{3} - 13 x^{2} + 4 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 31 + 21\cdot 157 + 94\cdot 157^{2} + 39\cdot 157^{3} + 106\cdot 157^{4} + 139\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 42 + 31\cdot 157 + 65\cdot 157^{2} + 61\cdot 157^{3} + 146\cdot 157^{4} + 56\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 + 117\cdot 157 + 155\cdot 157^{2} + 133\cdot 157^{3} + 129\cdot 157^{4} + 26\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 113 + 106\cdot 157 + 64\cdot 157^{2} + 83\cdot 157^{3} + 116\cdot 157^{4} + 80\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 132 + 100\cdot 157 + 30\cdot 157^{2} + 50\cdot 157^{3} + 13\cdot 157^{4} + 97\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 139 + 73\cdot 157 + 151\cdot 157^{2} + 119\cdot 157^{3} + 46\cdot 157^{4} + 87\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 141 + 103\cdot 157 + 127\cdot 157^{2} + 17\cdot 157^{3} + 76\cdot 157^{4} + 123\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 142 + 72\cdot 157 + 95\cdot 157^{2} + 121\cdot 157^{3} + 149\cdot 157^{4} + 15\cdot 157^{5} +O\left(157^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,2,5)(3,7,8,4)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,7,2,4)(3,5,8,6)$
$(3,7)(4,8)(5,6)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,8)(4,7)(5,6)$$-4$
$2$$2$$(3,8)(4,7)$$0$
$4$$2$$(3,7)(4,8)(5,6)$$0$
$4$$2$$(1,7)(2,4)(3,6)(5,8)$$0$
$4$$2$$(3,4)(5,6)(7,8)$$0$
$2$$4$$(1,6,2,5)(3,7,8,4)$$0$
$2$$4$$(1,6,2,5)(3,4,8,7)$$0$
$4$$4$$(1,7,2,4)(3,5,8,6)$$0$
$4$$8$$(1,3,6,7,2,8,5,4)$$0$
$4$$8$$(1,3,5,4,2,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.