Properties

Label 4.2e4_13e2_17e2.8t15.3
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 13^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$781456= 2^{4} \cdot 13^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} - 10 x^{5} + 23 x^{4} - 36 x^{3} + 51 x^{2} - 48 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 44\cdot 157 + 49\cdot 157^{2} + 112\cdot 157^{3} + 101\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 147\cdot 157 + 143\cdot 157^{2} + 38\cdot 157^{3} + 142\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 82\cdot 157 + 145\cdot 157^{2} + 104\cdot 157^{3} + 51\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 8\cdot 157 + 11\cdot 157^{2} + 19\cdot 157^{3} + 65\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 83\cdot 157 + 157^{2} + 81\cdot 157^{3} + 103\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 + 104\cdot 157 + 28\cdot 157^{2} + 136\cdot 157^{3} + 63\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 58\cdot 157 + 55\cdot 157^{2} + 89\cdot 157^{3} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 143 + 99\cdot 157 + 35\cdot 157^{2} + 46\cdot 157^{3} + 99\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,8,3)(2,5,4,7)$
$(1,8)(2,4)(3,6)(5,7)$
$(1,8)(3,6)$
$(1,5,8,7)(2,6,4,3)$
$(1,4,3,7,8,2,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $-4$
$2$ $2$ $(1,8)(3,6)$ $0$
$4$ $2$ $(1,6)(3,8)(5,7)$ $0$
$4$ $2$ $(1,8)(2,5)(4,7)$ $0$
$4$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,4,7)$ $0$
$2$ $4$ $(1,6,8,3)(2,5,4,7)$ $0$
$4$ $4$ $(1,7,8,5)(2,3,4,6)$ $0$
$4$ $8$ $(1,4,3,7,8,2,6,5)$ $0$
$4$ $8$ $(1,5,3,4,8,7,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.